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Executive Summary 
 

In this deliverable we describe the work done in task 6.2 
(PM13-PM24). In the previous deliverable D6.1 we have 
provided a brief introduction about diabetes and 
inflammation and details on the identification and definition 
of the immunological knowledge necessary to model 
inflammation in diabetes-related tissues such as the 
adipose tissue. In the present deliverable D6.2 we describe 
the updates on the overall model of inflammation and the 
other modules (metabolism, gut, physical exercise) that 
have been integrated to the simulation architecture.  

Keywords Diabetes, inflammation, immune cells, agent-based immune 
system simulator, model integration 
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1 Deliverable Description 

This deliverable describes the work concerning the integration of the different sub-

models of gut microbiota, food absorption, insulin/glucagon controller and physical 

activity together with the Agent-based model (ABM, or M1) of the immune system and 

inflammation, i.e., the integrated model backbone, into a unified simulation workflow. As 

the interaction includes all sub-models (M2-M5), all partners participate to this task.  

 

The integration has been performed adopting the following two general strategies:  

1) ABM model inputs are provided by using the preceding sub-model outputs in a 

sequential manner (pipeline);  

2) 2) the sub-models have been entirely embedded into the overall ABM simulator 

and executed at run-time (live) at each (macro-) time step of the ABM.  

The following consideration applies: whereas the former is generally preferable to 

speed-up execution, it is not always the a viable option since the model output 

sometimes cannot be computed in advance without compromising the overall model 

accuracy or, in general terms, without changing the “semantic” of the algorithm. The 

case-by-case description below will clarify this point. 

 

2 Background 

2.1 Background on the previous work as described in D6.1 

In the previous deliverable D6.1 we have described the work done in identifying and 

defining the immunological knowledge needed to customize the general-purpose 

immune system simulator that we have decided to employ for the purpose of the 

project MISSION-T2D so to have an accurate representation of the phenomena 

underpinning the innate immune activation (e.g., damage signals from hypertrophic 

adipocytes and from a high-glucose environment) and onset of the inflammatory 

process (e.g., macrophage chemotaxis and migration to adipose tissues). We have 

described the ABM model itself and we mentioned the specific/pivotal role of T-helper 

lymphocytes and macrophages. To this purpose we have described the modifications 
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to the original model to account for a much more detailed description of the known 

subclasses of T-helper (Th) cells and of the macrophage (MA) as well as of all 

cytokines and interleukines involved in the differentiation process of these immune 

cells. 

In the present deliverables we will briefly describe the other sub-models (extensively 

discussed in the relative deliverables from our MISSION-T2D partners), their mutual 

relationship and the strategy for combining them altogether to make up the unified 

model. 

Before mentioning the other model we will describe the updates to the ABM simulation 

of inflammation implemented to detail the differentiation of T-helper lymphocytes 

(implemented and operative) and macrophages (in progress).  

The list of abbreviations of cells and signalling molecules can be found in the appendix. 

 

3 Description of all modelling components  

3.1 General description of integration levels 

Task 6.2 has been devoted to the definition of the prerequisites for the integrated model 

(CNR, UniBO, UniCAM, UniRM, TNO, USFD) has been defined in Task 6.2. WP6 has 

collaborated with the other WPs in order to define the interfaces between the ABM and 

the other sub-models. 

A data exchange format for linking the various models developed in WP2-WP5 to the 

integrated modeling platform has been identified and used. The outputs/inputs from/to 

each level have been identified and reported in D6.1, and summarized here in Table 1. 

Figure 1 describes the general architectural interdependencies and relationships, and 

the main input/output fluxes among the M1-M5 models. 

The actual strategy for model integration has been also taken into account in this task.  

This present Task 6.3 has been carried out in cooperation with other WPs to define the 

interfaces among the agent-based (M1, WP6) and the other sub-models (M2 to M5), 

and to outline the actual strategy for whole-model integration. A preliminary data 

exchange strategy for linking the various models (WP2 to WP5) to the integrated 

modelling platform (WP6) has been identified and described as follows.  
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Model Input / Output (!  M1 input) 

M2 (gut) 

Nutritional pattern 

Enterotype 

SCFAs 

IFNγ/STAT1 signaling, cytokine 
production 

M3 (inflammatory 
pathways) 

Cytokines 

Cytokines 

M4 (metabolic) 
Energy intake and expenditure 

Major metabolites 

M5 (PA) 

Physical Activity 

Energy expenditure 

Specific metabolites 
 

Table 1: General scheme of major input (in red)/output (in green) parameters linking the various models. 

Model M1 will input/output from/to all other models. 

 

The general integration scheme relies on the exchange of the identified, critical 

parameters from one model with the other, such as the outputs of a model are used as 

inputs for the following one in a hierarchical way of operation (this has been called 

“summarize and jump”). 

• M1: Partner CNR (WP6) has implemented and integrated in the ABM a gene 

regulatory network level of description and simulation. Such level allows to give 

account for the complex differentiation processes of a) the CD4+ T helper (Th) 

lymphocytes into the subtypes Th1, Th2, Th17, Treg, and b) the macrophages (MA) 

into the subtypes MA1 and MA2. Such cell differentiation processes shape the form 

and the range of the immune response to different antigenic challenges, and are 

considered a critical feature of the immune responses. The model integration 

performed in this task allows bridging a gap between gene level information and 

cell level population, and give accounts on how the model M1 is able to describe a 

coherent immunological behaviour when challenged with different stimuli.  

• M2: Partner UNIBO (WP2) has developed a simplified gut dynamics model (M2) 

able to relate patient’s nutritional patterns (mainly described by quantity of ingested 

lipids from food) and patient’s enterotype as inputs to yield levels of short chain 
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fatty acids (SCFAs) such as butyrate and pyruvate, major metabolites in colonic 

lumen that regulate (colonic) inflammation via the inhibition of 

the IFNγ/STAT1 signalling pathways. Specific mechanistic associations relate the 

presence (and quantity) of such SCFAs outputting from M2 with the production of 

given cytokines (such as TNF-α, IL-2, IL-6 and IL-10) by lymphocytes and other cell 

types in model M1. 

• M3: Partner UniCAM (WP3) developed a model for mTOR signaling in immune 

cells, pivotal in eliciting an inflammatory process, that has strong influence on the 

efficiency of pancreatic beta-cells for the production of insulin (firstly introduced in 

D3.1 and then further developed deliverables D3.5). This model (M3) has been 

embedded in the agent-based model M1 to drive the inflammation process from 

metabolic deregulation. Relevant parameters such as cytokines (e.g., TNF-α) and, 

possibly, genes involved in the major intra- and intercellular processes described in 

model M1 have been identified and accounted for the link between the two models. 

Binary states (“on/off”) or continuous quantitative parameters, when available and 

relevant, related to the involved players will be taken into account. 

• M4: Partner TNO (WP4) adapted, extended and further developed a model (M4) for 

metabolism (described in deliverable D4.1). Dynamic mass balances and major 

cellular metabolic reactions describe seven tissue compartments. A number of 

parameters (identified in Table 1) are used as inputs for the agent-based model M1 

to get an integrated description of inflammation and metabolism. The metabolic 

model M4 has been also linked to the model M5 developed by partner 

USFD/UniRM (WP5) regarding the influence of physical activity on specific 

metabolites. Feedback loops M1!M4 are taken into account. 

• M5: Partners USFD and UniRM (WP5) have identified a model (M5) to introduce 

the physical activity (PA) in the project’s global architecture. Preliminary work in this 

respect has been described in D5.1. This model impinges upon few variables of the 

metabolic model (M4). In particular the parameter “work rate” which stands for a 

measure of the intensity of the physical activity, influences the dynamics of the 

metabolic model M4. This parameter in M5 is related to the heart rate, either 

measured by means of suitable equipment, or calculated on the basis of patters of 

physical activity as declared by the user. Moreover, M5 also add a relationship 

between PA and the level of the inflammatory cytokine IL-6. This realizes another 

(important) link between M1 and M5. 
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The integrated prototype of the models (M1+M2+M3+M4+M5) has been implemented 

in WP6 by partner CNR, and it results in a model that describes the inflammation in 

obese individuals (but also in healthy individuals) developing over time as a function of 

nutritional habits, lifestyle habits, and other personal parameters like age, gender, body 

mass index, etc. 

 

In what follows we describe in more detail the integration issues of the various sub-

models into the unified MISSION-T2D architecture. 

 
Fig 1: schematic representation of the models’ interdependences and relations. M1 serves as the “hub” of 

the other models in that it uses all inputs and produces the output. Sub-models feed M1 either pre-

computing variables/parameters values or running in parallel with it and passing the values computed at 

predefined time steps (as in the summarize-and-jump strategy). 

 

3.2 Integration gene regulation-inflammation 

Here we describe the integration of the Th1/Th2/Th17/Treg lymphocytes differentiation 

model (already implemented) and the macrophage MA1/2 switch (work in progress). 
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3.2.1 Th differentiation 

This integrative step expands the previous version of the ABM to include not only Th1 

and Th2 but also Th17 and Treg fates in the differentiation model. The model has been 

described in detail in Tieri et al., and such enhancement has been carried out on the 

ABM as described in D6.1 “Customization of immune simulator”. 

Figure 2 schematizes the gene regulatory network originally from Martinez-Sosa et al. 

The network has been organised according to the different functional compartments of 

the cell. The differentiation fate of a simulated CD4+ T cell depends on the input stimuli 

sensed by its membrane receptors, in particular, by the TCR (T-cell receptor, able to 

bind antigens presented by MHC-II complex on APCs) and by various cytokine 

receptors (i.e., receptors for IL-6, IL-23, IL-10, TGF-b, IL-2, IL-12, IL-18, IL-4, IFN-β and 

IFN-γ). Upon the activation of these network nodes, the activation level of key 

transcription factors and genes ultimately leading to the production of Th cell subset 

hallmark cytokines (i.e., IL-10, IL-17, IL-6, IFN-g and IL-4) is computed. Every node can 

assume a binary deactivated (0) or activated (1) state, and is linked to a set of 

experimentally associated nodes, which can contribute to activate (continuous black 

line) or to inhibit (dotted red line), as reported in fig. 1. The global network state is 

synchronously updated according to a common rule used for updating single nodes. A 

node is activated (i.e., turning its state to 1 at time step t + 1) if and only if at time t 

there is at least one node in the set of its activators are turned on (state 1) and all 

nodes in its inhibitory set are turned off (state 0); otherwise, its state is set to 0 

(deactivated). This is a typically used simplification of a more complex realistic situation 

but represent the only viable modelling choice in absence of knowledge about the 

activation of each single gene. The Boolean updating function is formally defined as 

follows:  

xi,t+1 = ∨ j∈Ai
x j,t( )∧(¬∧ j∈Ii

x j,t )  

where we use the notation xi,t to define the state of node i at time t, Ai is the set of 

nodes activating node i, and Ii is the set of nodes inhibiting node i. For simplification, all 

cells release the same amount (indicated by ω) of cytokines. This implies that all 

cytokines have the same efficacy in exercising their action. At each macro time step 

every Th0 cell ‘senses’ the concentration of the input cytokines in the same lattice point 

and sets the activation level of the corresponding input nodes. The activation is 

modelled as a stochastic event with probability p given by a sigmoid function 

depending on the concentration c of the input cytokine: 
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p = c2/(ω2 + c2). 

As shown in the Fig. 2 the network is made of 40 nodes and 67 edges. In order to 

distin- guish the input nodes from the internal ones (that have a feedback effect) we 

have added four nodes from the original network, namely, ‘IFN-γ input’, ‘IL-4 input’, ‘IL-

6 input’ and ‘IL-10 input’. We then performed the dynamical simulation according to the 

rule reported above, until a fixed point is reached (this requires not more that 20 

iterations). Four different fixed points are reported in Martinez-Sosa et al., identifying 

the four Th subtypes: Th1, Th2 Th17 and Treg (Th0 nodes remain Th0 if no input is 

activated). These are characterized by the activation of a set of signature genes as 

follows:  

 

1. Th1: IFN-γ, IFN- γR, SOCS1, TBET   

2. Th2: GATA3, IL-10, IL-10R, IL-4, IL-4R, STAT3, STAT6   

3. Th17: IL-17, IL-6, IL-6R, JAK3, ROR−γt, STAT3   

4. Treg: FOXP3 

 

According to the final network configuration, and after the discrete dynamics is ap- 

plied, the transition to the new Th phenotype is operated. The phenotype differences 

are mirrored by a different pattern of secreted cytokines, which greatly influences the 

overall immune response dynamics.   
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Fig. 2: Scheme of the gene regulatory network of Th differentiation adapted from Martinez-Sosa et al. 

Black lines: activation; red lines: repression/deactivation. Depending on the input stimuli that engage cell 

surface receptors (namely, antigen presenting MHC-peptide complex on TCR, IL-6, IL-23, IL-10, TGF-b, 

IL-2, IL-12, IL-18, IL-4, IFN-b and IFN-g), the network computes the activation level of key transcription 

factors for each cell fate (Th1, Th2, Th17 and Treg) and the expression level of genes resulting in the 

production of signature cytokines such as IL-10, IL-17, IL-6, IFN-g and IL-4.  

 

3.2.2 Differentiation of the Macrophage into type 1 and 2  

We here describe a perspective work not previously planned in the DoW that takes into 

account the macrophage MA1/MA2 differentiation, a critical immune regulation 

process. 

In line with the Th differentiation, a phenotypic switch of macrophages (MA) towards a 
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pro-inflammatory (MA1) as opposed to anti-inflammatory (MA2) profile  is observed in 

the dynamics of the MA population (Martinez et al.).  

In a similar manner to the Th differentiation, we are therefore detailing the agent-based 

rule for macrophage differentiation by means of a Boolean gene-regulatory network 

(see Fig. 3). Also in this case the differentiation fate of the cell is determined by the 

cytokine background, specifically IFN-gamma and IL-4 besides the presence on the 

antigen’s surface, of lipopolysaccharide molecules. This is a work in progress and 

constitutes the aim of an on-going collaboration with the American University of Sharjah 

(UAE) and Virginia Bioinformatics Institute (USA). 

 

Fig. 3: Scheme of the gene regulatory network of macrophage MA1/MA2 differentiation. Four cellular 

compartments are taken into account. Black lines: activation; red lines: repression/deactivation. 
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3.3 Integration gut-inflammation M1-M2 

Basing mainly on the work of Wu et al. and the review of Scott et al., Partner UniBO 

has gathered a list of important gut microbiota (GM) bacteria and assessed how 

different diet component affect their abundance in the gut has been defined in WP2, as 

reported in D2.4. 

Starting from the gained knowledge, a table summarizing bacterial species, nutritional 

patterns and pro- or anti-inflammatory trend has been produced in order to implement 

the gut-inflammation integrated modelling layer. In table X, symbol “+” means a positive 

correlation (presence of the bacterial strain) between the bacteria and the 

corresponding nutritional pattern, while “-” stands for negative correlation. If no 

correlation has been observed in these works, no symbol is included. The main 

products of the considered bacteria have been report in the following tables, with 

particular attention to the short-chain fatty acids butyrate and propionate, equipotent 

and directly linked to inflammation modulation (Tedelind et al). Such table shows a diet 

or nutritional, through its effects on GM, affects both the host metabolism and the 

immune system, contributing to the metabolic flexibility switch impairment that is 

observed in Insulin Resistant and Type 2 Diabetes subjects. In particular, in the 

presence of butyrate, TNF, IL-6 and IL-1β levels decrease dose-dependently. With 10 

mM butyrate, TNF, IL-6 and IL-1β levels reach control values, while 2 mM butyrate 

strongly inhibits LPS induced TNF production by PBMC in healthy and non-healthy 

(Chron’s disease) subjects (Segain et al.).  

In conclusion the knowledge distilled in this table allows inputting TNF, IL-6 and IL-1β 

parameters in M1 on the basis of individual’s enterotype and nutritional pattern, 

carrying out the integration level M1-M2. 
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Species of bacteria PUFA SATURATED 
FATTY ACIDS

CLA FATTY 
ACIDS

TRANS FATTY 
ACIDS

VEGETABLE 
PROTEINS

ANIMAL 
PROTEIN

TOTAL 
PROTEINS PREBIOTICS SUGARS

TOTAL 
CARBOHYDR

ATES
FIBER PRODUCTS Butyrate 

production
Propionate 
production OTHER INFO

Bacteria.Actinobacteria -
Bacteria.Actinobacteria.Actinobacte
ria.Actinomycetales.Actinomyces + - pathogenic bacteria

Bacteria.Actinobacteria.Actinobacte
ria.Actinobacteridae.Bifidobacterial
es.Bifidobacteriaceae.Bifidobacteri
um

+ - + - + acetate, butyrate, ammonia, 
molecular hydrogen Yes

control intestinal pH (decrease that amount of 
ammonia in the colon), regulate the intestinal 

microbial homeostasis, inhibit pathogens and harmful 
bacteria that colonize and/or infect the gut mucosa, 

modulate the local and systemic immune responses, 
Bacteria.Actinobacteria.Actinobacte
ria.Actinobacteridae.Bifidobacterial
es.Bifidobacteriaceae.Bifidobacteri
um.Bifidobacterium adolescentis

-
SCFAs (propionate, butyrate, and 

acetate), lactate, vitamins, 
cyanocobalamin, nicotine, thiamin, 

folic acid,  pyridoxine

Yes Yes

control intestinal pH (decrease that amount of 
ammonia in the colon), regulate the intestinal 

microbial homeostasis, inhibit pathogens and harmful 
bacteria that colonize and/or infect the gut mucosa, 

modulate the local and systemic immune responses, 

Bacteria.Actinobacteria.Actinobacte
ria.Coriobacteriales +

Bacteria.Actinobacteria.Actinobacte
ria.Coriobacteriales.Coriobacteriac
eae

+ enriched in obese

Bacteria.Bacteroidetes + + gram negative, decrease in obesity

Bacteria.Bacteroidetes.Bacteroidia + + +

Bacteria.Bacteroidetes.Bacteroidia.
Bacteroidales + + +

Bacteria.Bacteroidetes.Bacteroidia.
Bacteroidales.Bacteroidaceae - + + + + + - -

Bacteria.Bacteroidetes.Bacteroidia.
Bacteroidales.Bacteroidaceae.Bact
eroides

- + + + + + - - - acetic acid, iso valeric acid, and 
succinic acid Gram-negative, pathogenic bacteira

Bacteria.Bacteroidetes.Bacteroidet
es.Bacteroidales.Bacteroidaceae.B
acteroides thetaiotamicron

+ acetic acid, iso valeric acid, and 
succinic acid Gram-negative, pathogenic bacteira

Bacteria.Bacteroidetes.Bacteroidia.
Bacteroidales.Prevotellaceae + - - - - SCFAs (Acetate, propionate), 

succinate Yes

Bacteria.Bacteroidetes.Bacteroidia.
Bacteroidales.Prevotellaceae.Para
prevotella

- - + succinate, acetate

Bacteria.Bacteroidetes.Bacteroidia.
Bacteroidales.Prevotellaceae.Prevo
tella

+ - - SCFAs

Bacteria.Bacteroidetes.Bacteroidia.
Bacteroidales.Porphyromonadacea
e

+ + + - - -

Bacteria.Bacteroidetes.Bacteroidia.
Bacteroidales.Porphyromonadacea
e.Barnesiella

- succinate, acetate

Bacteria.Bacteroidetes.Bacteroi
dia.Bacteroidales.Porphyromona
daceae.Butyricimonas

butyrate, isobutyrate, succinate, 
acetate, propionate Yes Yes

Bacteria.Bacteroidetes.Bacteroidia.
Bacteroidales.Porphyromonadacea
e.Odoribacter

+ + - Succinate, acetate, iso-valeric acid

Bacteria.Bacteroidetes.Bacteroidia.
Bacteroidales.Porphyromonadacea
e.Parabacteroides

+ + - - -
acetic acid,succinic acids,isovaleric 

acid, propionic acid, 
isobutyrate,formic acid, lactic acid, 
catalase, Mannose, raffinose, L-

Rhamnose, Trehalose

Yes

Bacteria.Bacteroidetes.Bacteroidia.
Bacteroidales.Porphyromonadacea
e.Parabacteroides diastonis

catalase

Bacteria.Bacteroidetes.Bacteroidia.
Bacteroidales.Rikenellaceae -

Bacteria.Bacteroidetes.Bacteroidia.
Bacteroidales.Rikenellaceae.Alistip
es

- succinate, acetate, mannose, 
raffinose, propionic acid

Bacteria.Firmicutes - - increase with obesity

Bacteria.Firmicutes.Bacilli + +

Bacteria.Firmicutes.Bacilli.Lactobac
illales + +

Bacteria.Firmicutes.Bacilli.Lactobac
illales.Lactobacillaceae

Bacteria.Firmicutes.Bacilli.Lactobac
illales.Lactobacillaceae.Lactobacillu
s

+ - + lactate help maintain the pH level

Bacteria.Firmicutes.Bacilli.Lactobac
illales.Lactobacillaceae.Lactobacillu
s.Lactobacillus ruminis

+ lactate help maintain the pH level

Bacteria.Firmicutes.Bacilli.Lactobac
illales.Streptococcaceae + +

Bacteria.Firmicutes.Bacilli.Lactobac
illales.Streptococcaceae.Streptococ
cus

+ + lactate pathogenic bacteria

Bacteria.Firmicutes.Clostridia - - +

Bacteria.Firmicutes.Clostridia.Clost
ridiales - -

Bacteria.Firmicutes.Clostridia.Clost
ridiales.Acidaminococcaceae.Phas
colarctobacterium

- + propionate Yes gram negative, succinate consumer

Bacteria.Firmicutes.Clostridia.Clost
ridiales.Clostridiaceae.Anaerotrunc
us

- +

Bacteria.Firmicutes.Clostridia.Clost
ridiales.Clostridiaceae.Anaerotrunc
us.Faecalibacterium prausnitzii

+ + formate, D-lactate, butyrate

Bacteria.Firmicutes.Clostridia.Clost
ridiales.Clostridiaceae.Clostridium butyrate Yes

Bacteria.Firmicutes.Clostridia.Clost
ridiales.Clostridiaceae.Clostridium.
Clostridium histolyticum

- organic solvents such as butanol

Anti- (green) or pro- (red) inflammatory action of bacteria specie in presence of the corresponding nutritional pattern
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Table 2: lookup table integrating enterotype, nutritional pattern and pro- or anti-inflammatory settings in 

terms of production of SCFAs and related inflammatory modulation activity (TNF, IL- and IL-1b 

production). 

 

3.4 Integration beta cells-metabolism-inflammation M1-M3-M4 

Bacteria.Firmicutes.Clostridia.Clo
stridiales.Incertae_Sedis_XIV -

Bacteria.Firmicutes.Clostridia.Clost
ridiales.Incertae_Sedis_XIV.Blautia - acetate, ethanol, lactate, isobutyrate, 

isovalerate Yes

Bacteria.Firmicutes.Clostridia.Clost
ridiales.Incertae_Sedis_XIII - -

Bacteria.Firmicutes.Clostridia.Clost
ridiales.Incertae_Sedis_XIII.Anaero
vorax

- - acetate, butyrate, ammonia, 
molecular hydrogen Yes

Bacteria.Firmicutes.Clostridia.Clost
ridiales.Lachnospiraceae - + + SCFA, butyrate, gas Yes

Bacteria.Firmicutes.Clostridia.Clost
ridiales.Lachnospiraceae.Coprococ
cus

- butyrate Yes

Bacteria.Firmicutes.Clostridia.Clost
ridiales.Lachnospiraceae.Roseburi
a

+ - + + butyrate Yes

Bacteria.Firmicutes.Clostridia.Clost
ridiales.Lachnospiraceae.Dorea -

Bacteria.Firmicutes.Clostridia.Clost
ridiales.Eubacteriaceae - SCFA

Bacteria.Firmicutes.Clostridia.Clost
ridiales.Eubacteriaceae.Eubacteriu
m.Eubacterium rectale

- + + butyrate Yes

Bacteria.Firmicutes.Clostridia.Clost
ridiales.Ruminococcaceae - - SCFA

Bacteria.Firmicutes.Clostridia.Clost
ridiales.Ruminococcaceae.Butyricic
occus

- - - + + butyrate Yes

Bacteria.Firmicutes.Clostridia.Clost
ridiales.Ruminococcaceae.Oscilliba
cter

- + + + valerate

Bacteria.Firmicutes.Clostridia.Clost
ridiales.Ruminococcaceae.Rumino
coccus.Ruminococcus bromii

+ ethanol, acetate, formic acids

Bacteria.Firmicutes.Clostridia.Clost
ridiales.Ruminococcaceae.Subdolig
ranulum

- butyrate, formic acid Yes

Bacteria.Firmicutes.Clostridia.Clost
ridiales.Veillonellaceae.Megasphae
ra

- Butyrate, valerate, propionate, 
acetate, caproate Yes Yes

Bacteria.Firmicutes.Erysipelotrichi + -

Bacteria.Firmicutes.Erysipelotrichi.
Erysipelotrichales + -

Bacteria.Firmicutes.Erysipelotrichi.
Erysipelotrichales.Erysipelotrichace
ae

+ -

Bacteria.Firmicutes.Erysipelotrichi.
Erysipelotrichales.Erysipelotrichace
ae.Coprobacillus

+ -

Bacteria.Firmicutes.Erysipelotrichi.
Erysipelotrichales.Erysipelotrichace
ae.Holdemania

- + - acetate, succinate, lactate

Bacteria.Firmicutes.Erysipelotrichi.
Erysipelotrichales.Erysipelotrichace
ae.Turicibacter

-

Bacteria.Firmicutes.Negativicutes.S
elenomonadales.Acidaminococcac
eae.Acidaminococcus

- propionate, acetate, butyrate Yes Yes

Bacteria.Fusobacteria -

Bacteria.Fusobacteria.Fusobacteria -

Bacteria.Fusobacteria.Fusobacteria
.Fusobacteriales + - - butyrate, acetate Yes

Bacteria.Proteobacteria - - + + Gram-negative

Bacteria.Proteobacteria.Betaproteo
bacteria - + + nitrite, sulfate gram negative

Bacteria.Proteobacteria.Betaproteo
bacteria.Burkholderiales - + gram negative

Bacteria.Proteobacteria.Betaproteo
bacteria.Burkholderiales.Alcaligena
ceae.Sutterella

+ + Gram-negative, pathogenic bacteria

Bacteria.Proteobacteria.Betaproteo
bacteria.Burkholderiales.Alcaligena
ceae.Parasutterella

- gram negative

Bacteria.Proteobacteria.Gammapro
teobacteria + - sulfur Gram-negative, pathogenic bacteria

Bacteria.TM7 + related to inflammation

Bacteria.TM7.TM7_incertae_sedis +
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The combined model implemented in WP3 and described in D3.1 and further in D3.5 is 

used to take into account functional and dysfunctional beta-cells rates of change and 

related insulin production; such rates are influenced by glucose dynamics, activated 

macrophages and T cells (a schematic representation is provided in Fig. 4). When 

some of the parameters considered in M3 are already implemented by M1 in native 

mode, then the parameters from M1 are considered, and those from M3 disregarded 

(namely macrophages and T cells). The main terms are Glucose concentration (G), 

Insulin concentration (I), Functioning beta-cells (betaf), Dysfunctional beta-cells 

(betanf), number of macrophages (per unity of volume, M), number of Activated 

Macrophages (AM), amount of beta-cells antigenic proteins (A), T cells (T), Insulin 

resistance (IR), expression level for mTOR (MTOR). 

The model M3 provides quantitative parameterization of the T2D critical compartment 

of insulin-producing beta-cells and its interrelationships with inflammation and 

metabolism. 

 

 
Figure 4. A schematic representation of the M3 model where the red lines represent one species causing a 

rate of change in another (i.e., an indirect effect, such as via the action of cytokines), the blue lines 

represent a rate of change of one species causing a rate of change in another (i.e. a direct effect) and the 

green line represents the influence of blood glucose and insulin dynamics.  
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3.5 Integration global metabolism-inflammation M1-M3-M4-M5 

As foreseen, the integrated multiscale model will be obtained by developing and 

integrating models at two different aggregation levels and time scales. The short time 

scale, low aggregation level model (Dynamic E-MF model, see D4.3) corresponds to 

the challenge test time scale, i.e., minutes-to-days, and contains detail on metabolic 

pathways, inflammatory processes and their interactions. The long time scale, high 

aggregation level (MF-HOMA) model covers the week-to-months timescale and 

contains little mechanistic details. 

The integrated model constructed in WP6 by partner CNR integrates the immune 

system simulator from CNR, the metabolic model contributed by TNO (see D4.1), and 

the models of microbiota function (WP2), beta cell function (WP3) and physical activity 

(WP5), contributed by the other partners. 

In practice the simulator will cover a time frame of hours to years1. This raised the 

question of how to integrate the MF-HOMA model that originated at TNO and that was 

built inside the Marvel software tool (hereinafter Marvel, see Deliverable 4.2). Marvel is 

best suited to create a forecast for a much longer time frame, i.e., months to as much 

as 6 years. It was jointly decided to keep both models, Dyna and use the MF-HOMA 

model exclusively for the longer term forecast simulations.  

To connect the models at the different time scales with each other, the simulator 

integrating the mechanisms of inflammation, metabolism, as well as the other 

compartments can be used to run simulations for different diabetes subgroups to arrive 

at personalised parameter values (strengths and speed) for the interactions between 

high-level variables in the Marvel model, since these are expected to be different for 

different subgroups.  

3.5.1 The original metabolic model from Kim et al. 

The original formulation of the compartmental model from Kim et al. predicts fuel 

homeostasis during exercise by using the hormonal control to regulate cellular 

metabolic processes. The whole-body model is composed of seven tissue 

compartments: brain, heart, liver, gastrointestinal tract, skeletal muscle, adipose tissue 

and “other tissues”. Each tissue compartment is then described by dynamic mass 

                                                        
1 In practice we are limiting the time-span of the simulations to one year for computational reasons: one year = 6 days 

of CPU time on a fast-processor computer. We are currently working to considerably reducing the computational 

requirements. 
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balances and major cellular metabolic reactions, which lead to substrates (glucose, 

lactate, pyruvate, alanine, free fatty acids and glycerol) “conversion” in ATP.  
 

 
Fig 4: List of metabolites and reactions taken into account in the metabolism model from Kim et al., and 

implemented in the M4 submodel. 

 

The basic hypothesis behind the model is that exercise-induced change in the hormone 

epinephrine, affects the pancreatic secretion of glucagon and insulin. As a 

consequence, any change in the glucagon-to-insulin ratio can modulate in a 

coordinated way the metabolic flux rates of different tissues in order to prevent 

hypoglycaemia.  

The blood epinephrine level concentration CE(t) varies in time according to the 

following equation 1: 

 
CE(t) changes with a step increase in the work rate WR, which represents the modelled 

exercise intensity.  

The input of the Kim model is work rate: moderate (125 W power output at 60% of peak 

oxygen consumption [VO2max]) exercise for 60 min was implemented. 
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Arterial epinephrine level was given as an input function, which directly affects heart 

and skeletal muscle metabolism and indirectly other tissues via a integral rein 

glucagon–insulin controller inspired by Saunders et al.. 

3.5.2 Summary of the original Kim model assumptions 

• 7 compartments, 22 metabolites involved in 25 reactions to model the fuel 

homeostasis of the whole body. 

• Exercise (60 min at 60% of peak oxygen consumption VO2max) is modeled as a 

step change in WR (125 W power).   

• The blood epinephrine level concentration CE(t) varies in time according to the step 

change increase in WR previously described. 

• The arterial glucose homeostasis is manteined at 5 mmol/l by glucagon-insulin 

controller inspired by Sauder's controller [2].  

 

3.5.3 Modifications to the Kim model for MISSION-T2D purposes 

Since the epinephrine secretion is a function of the exercise intensity expressed as 

WR, the parameters ω(WR) and τE in eq. (1) governing the epinephrine concentration 

must be adjusted in order to give a realistic description of the epinephrine dynamics. 

However, the value assigned by Kim for these parameters is fixed and the authors 

provide no mathematical relationship dependent on WR value.  

Thus, in order to overcome this problem, we substituted eq. (1) with another set of 

equations, in which the dependence on WR is explicit. To this aim, a validated model of 

epinephrine secretion and elimination basing its input on the physical exercise has 

been considered (Kildegaard et al.) and adapted to our purposes.  

The input of the Kim model is the WR, which is not an obvious quantity to measure or 

to estimate in order to describe the energy expenditure from the daily physical activity.  

For this reason we adopted as input the percentage of VO2max using the 

mathematical relationship linking the percentage of VO2max to WR reported by 

Cabrera et al.   

 

The Kim model describes the fuel homeostasis during physical activity, but doesn't take 

into account the glucose intake by meal. To model this aspect we introduced the Dalla 
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Man formulation of glucose rate of appearance (Dalla Man et al.) based on gastric 

empting description reported by Elashoff et al. The same formulation was adopted to 

represent the rate of appearance of alanine and triglycerides.  Such modifications were 

included in the gastrointestinal compartment. 

The original Kim model does not include any description of the modification that 

exercise induces on inflammatory processes, which is one of the MISSION-T2D aims. 

Thus, a novel set of equation has to be proposed to link the two aspects.  

As widely recognized, physical exercise can contrast and delay the evolution of T2D in 

light of the fact that contraction of skeletal muscles during exercise activates a series of 

modifications of the inflammatory pathway (Petersen AM et al), which eventually induce 

a reduction of the insulin resistance (Hotamisligil  et al.). IL-6 (interleukin-6) has been 

identified as the first cytokine increasing in the circulation during exercise and 

stimulating the activation of an anti-inflammatory cascade given by the secretion of 

cytokine inhibitors (sTNF-R and IL-1ra) and of the cytokine IL-10 (Febbraio et al., 

Pedersen BK et al.). As a consequence, a new model of IL-6 beneficial effects on 

inflammatory process has been developed (Morettini et al. (a) and Morettini et al. (b)). 

 

Summary of modifications to the original Kim model: 

− Model of epinephrine secretion and elimination basing its input on the physical 

exercise. 

− Introduction of the percentage of VO2max as input for describing the intensity 

of the physical  activity (replacing the fixed value of 125 W). 

− Implementation of a model of oral absorption of glucose, alanine and 

triglycerides.  

− Implementation of physical exercise effects on IL-6 modifications stimulating the 

activation of anti-inflammatory pathways. 

 

3.5.4 Further developments to be implemented 

T2D is associated with a diminished glucose transporter expression. In addition, 

chronic hyperglycaemia often leads to insulin resistance in the peripheral tissues and 

has also been implicated in the reduction of beta cell replication rates. Transition from 

insulin resistance to diabetes is subsequently caused partial loss of beta-cell function. It 

is well known too that the development of insulin resistance can be strongly influenced 
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by the immune system. New model of diabetes starts from integrating different existing 

models combining beta-cells, macrophages, and Th lymphocytes mass dynamics 

with glucose and insulin dynamics. 

The implementation of alanine and triglycerides dynamic modifications during meal 

needs the setting of proper parameters, still not known in literature. 

In order to use the heart rate (HR) as input for MISSION-T2D model, we need to 

implement a relationship between HR and percentage of VO2max. It is wide 

recongnized that oxygen compsuntion and HR during physical exercise are linearly 

related. 
  

 

4 Model integration, prototype and end-user interface 
(mobile app) 

4.1 Difficulties/challenges encountered in the integration 

The model of Kim et al. has been coded in ANSI/C language for portability and for 

easiness of integration in the main simulation code. During the porting a number of 

issues appeared as to the use of ODEPACK (including the LSODA routine) numerical 

integrator that has been originally developed in FORTRAN (by the Lawrence Livermore 

National Laboratory, USA). Of the few C-porting of this library we have chosen the 

SUNDIALS (SUite of Nonlinear and DIfferential/ALgebraic equation Solvers, developed 

by the same lab) consisting of the following five solvers 

(https://computation.llnl.gov/casc/sundials/main.html): 

• CVODE: solves initial value problems for ordinary differential equation (ODE) 

systems; 

• CVODES: solves ODE systems and includes sensitivity analysis capabilities 

(forward and adjoint); 

• IDA: solves initial value problems for differential-algebraic equation (DAE) systems; 

• IDAS: solves DAE systems and includes sensitivity analysis capabilities (forward 

and adjoint); 

• KINSOL: solves nonlinear algebraic systems. 

The solver fitting our purpose is the CVODES. Unfortunately it has shown a 

performance that is one order of magnitude slower compared to the original Fortran 
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solver. We have spent some time trying to understand the reason for this drawback at 

times considering using the original Fortran library in our code eventually sticking to the 

C-version for portability and the usability reasons. At the time of writing of this 

document we are considering to use another implementation of the same CVODE 

library that runs on GPU to greatly speedup the computation. However due to more 

pressing tasks, this job has been downgraded in the priority list. 

 

The computational time required to run a single simulation corresponding to a query for 

forecast issued by the mobile app user is “to date” very demanding notwithstanding our 

effort to speed-up computation. Even if the six-days time required to run a real-life 1 

year time span will be reduced by an order of magnitude, it is unrealistic to hope for a 

real-time execution of the model on a limited capacity hardware as a mobile device. 

This problem has already been foreseen at the beginning of the project and a solution 

to this problem has been long identified (pre-computing a look-up table) as discussed 

in deliverable D8.4. 

 

4.2 Integration with the end-user interface 

The mobile application is specified to be the tool to be provided to end users to self-

monitor health and lifestyle aspects, and to be employed to receive a dynamic estimate 

on the risk of developing Type 2 Diabetes based on such aspects (Fig 5). 

As specified in deliverable D8.4, the solution to bypass the computational capacity 

deficit in current day smartphones and tablets and to workaround the extensive 

simulation time even on much faster and more capable platforms, is to run and record 

an extensive amount of simulations on appropriate hardware, like university computing 

centers or cloud computing facilities, in order to create a vast number of results for a 

wide spectrum of physiological parameters. 

The resulting data are then broken down into one or multiple lookup tables, which 

summarize results for specific configurations (or set of configurations clumped 

together) and subsequently enabling estimations to be made on mobile devices. 

 

The figure 5 evidences the kind of input/outputs taken/given by the MISSION-T2D 

integrated model. The input includes a parameterised version of the physical activity 

pattern of the user, e.g., total number of hours of PA per week and the average 

intensity or a more detailed weekly schedule or - if a measurement device is available - 
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the weekly pattern of activity as measured which is then assumed to repeat unchanged 

for each week. Another input is the nutritional habit of the user on a daily or weekly 

basis. The cumulative daily meal will be broken down in the macronutrients, meaning, 

proteins, fat, fibres and carbohydrates. A finer grain classification of nutrients accounts 

for the level of butyrate and propionate directly influencing the tendency of the immune 

system to drift toward the inflammatory state. 

Other general parameters characterising the user include the age, gender, weight, etc. 

All these constitute the boundary condition of the model execution, which will then 

forecast the meta-flammation state at the “forecasting horizon time T”. The simulation 

runs and returns the detailed dynamics of dozens of variables. These are ultimately 

used to calculate a unique value identifying the risk of T2D at time T (as indicated in the 

figure). The “risk of T2D” will therefore be a complex function accounting for the level of 

insulin resistance (e.g., efficiency of beta-cells) and the level of inflammatory cytokines 

and pro-inflammatory cell counts. 

 
Fig 5 schematic integrated description of the user input data space, simulation engine and resulting 

forecasts that constitute the project pipeline for the T2D risk estimation. The user will be able to specify 

and continuously update temporal horizon of her/his forecast (T) as well as patient-specific data (physical 

activity, PA; food intake, K and M; body parameters such as age, gender, weight, enterotype, etc). The 

simulations, analysis and related forecasts based on these dynamic datasets will estimate the risk of the 

individual to develop T2D. 
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The final integrated simulation engine (WP6) will compute the required 

extensive scan of the parameter space and clusterize the results on the basis of 

carefully chosen identifiable outputs. This task is planned to take place within 

the time limit of milestone MS7. The resulting ‘initial conditions/forecasted 

values’ space will then constitute the lookup tables that will eventually be 

imported into the mobile app and consulted upon the user request.  

 

5 Deliverable conclusions / next step 

At the time of writing of this manuscript the unified model runs smoothly. We are 

performing a number of activities to: 

- speedup computation; 

- architectural optimisation;  

- perform sensitivity analysis; 

- estimate unknown integration-related parameters; 

- other minor tasks. 

After this phase is concluded we will start bulk execution of the simulator towards the 

validation and later to construct the lookup table for the mobile app. To this purpose we 

are evaluating the possibility to use the Amazon Cloud to perform such large-scale 

runs. A rough initial estimation for the cost of running a single instance of the simulation 

should cost no more than 40 USD at a very conservative "worst case" estimate. The 

calculation has been made by taking Linux virtual machine with 4 CPU cores, 15 GB of 

RAM and 2x40GB of SSD storage, assuming a runtime of 144 hours (i.e., 6 days). This 

kind of machine "costs" 0.28 USD per hour, resulting in the above mentioned 40 USD 

for one run. 

However, if we get anywhere near the mentioned performance improvement of one 

magnitude, the costs may drop well below 5 USD per simulation, which, given even a 

tight budget, may lead to a significant number of simulations. Other configurations are 

available, like an 8 CPU Core, 30 GB RAM, 2 x 80 GB SSD system for twice the hourly 

costs. Another option includes the Amazon Elastic Block Storage into account, 

something that may reduce the hourly costs per instance further. 
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6 Appendix: Partial list of abbreviations used 

 
AT Adipose Tissue 

APC Antigen-Presenting Cell (immunocompetent cell type) 

CD Cluster of Differentiation (surface markers of lymphocytes) 

CTL Cytotoxic T lymphocyte (immunocompetent cell type) 

DC Dendritic Cell (immunocompetent cell type) 

HSP Heath shock protein (signalling molecule) 

IL Interleukin (signalling molecule) 

IFN-γ Interferon gamma (signalling molecule) 

LPS Lipopolysaccharide (component of pathogen cell walls, signal of danger) 

MCP-1 Monocyte Chemotactic Protein-1 (signalling molecule) 

MHC Major Histocompatibility Complex (surface protein of immunocompetent 
cell types) 

MIP-1α Macrophage Inflammatory Protein-1 alpha (signalling molecule) 

T2D Type 2 Diabetes 

TNF-α Tumor Necrosis Factor alpha (signalling molecule) 
 

Table 2 List of abbreviation. 
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