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Executive Summary 
 

This document describes the work done in Task 4.3. 

 

Task 4.3 – Constructing a high-level aggregation model of 
the interaction between glucose metabolism and chronic 
inflammation. The model has been constructed and has 
been made available to the Consortium. To view the model 
and run simulations the Marvel Viewer tool has been made 
available to the Consortium as well. To prepare for use of 
the model in P4 health applications, a start was made to 
connect the model with the Nutrition Researcher Cohort, an 
online resource that integrates personal health data. 

Keywords Semi-quantitative, model, metabolism, systems biology, 
inflammation, personal health data 
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1 Deliverable description 

Deliverable 4.2 is the result of Task 4.3: Constructing a high-level aggregation model of 

the interaction between glucose metabolism and chronic inflammation (weeks-months’ 

time scale). 

The integrated metabolism-inflammation simulator developed in MISSION-T2D is 

constructed as a multilevel model, connecting and integrating descriptions at different 

space-time scales ranging from subcellular/molecular to whole body levels, and from 

(sub)seconds to years. The model developed in Task 4.3 is required to describe 

changes at the whole body, weeks-months’ timescale. This aggregation level has been 

chosen since it allows for model calibration using data from controlled intervention 

studies, for which ample literature resources are available.  

Also at such a high aggregation level, one could include biological processes known to 

be relevant for the development of T2D to a considerable level of detail. However, as 

an additional requirement the model should connect to parameters measured and 

reported by homecare devices. This will facilitate the actual use of the model in practice 

e.g. for personal lifestyle coaching in the prevention of T2D. Unfortunately, the choice 

of measured parameters by self-monitoring devices is currently still rather limited. 

Therefore, we decided to start the model from a very high level of aggregation, leaving 

out much detail but taking care to connect to readily available self-monitoring data as 

much as possible. Aspects relevant for Mission-T2D were included to one or more 

levels of detail so as to generate a well-balanced description. Care was taken to build 

the model with a systems view in mind, acknowledging the fact that many biological 

processes in different domains mutually interact to produce an integrated outcome (in 

this case, T2D). The model was therefore based on a system dynamics model 

previously developed by TNO that integrates energy intake, glucose/insulin 

metabolism, gut health, inflammation, mental stress and organ function.  

A further objective is to make the model suitable for actual use in P4 Health 

applications. This requires that the model can run scenario simulations and generate 

predictions of lifestyle choices-dependent T2D development based on an individual’s 

personal health data. We prepared for such use of the model by linking it to the 

Nutrition Researcher Cohort, an online resource that integrates personal health data. 
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2 Deliverable Results 

2.1 Diabetes model v1.0 

The model described in this report should be considered  a prototype, representing a 

first step in the development of a holistic systemic health model that describes some 

major subsystems that determine human health status and their interactions. Primary 

subsystems of interest included are energy metabolism, glucose/insulin dynamics, 

inflammation, stress response systems and tissue damage. The model can use the 

following life style factors as inputs for simulations (“control variables”): dietary energy 

intake, exercise/physical activity, sleep/meditation/relaxation and food quality. 

The model file together with the model viewer software and a guideline for using the 

software is made available to the consortium on the following ftp location: 

ftp://tnopresenter.nl 

Filename: Marvelousviewer.exe 

2.1.1 Model properties 

The model was created using a TNO proprietary interactive software (Marvel) as a set 

of variables characterized by starting values, interconnected by causal relations. For 

computational purposes, in the Marvel software all variables are scaled between 0 and 

1. Thus, for all variables a scaling protocol  is needed to translate the Marvel value into 

a “real world” value, The relations between variables are programmed as causal 

effects, as follows: every interaction is assigned a strength and a speed, each to be 

chosen from 5 predefined categories. A step change D in source variable S then 

causes the target variable T to change in a time-dependent manner according to: 

T(t) = T(0) + D.B.(1-e-k.t),                        (Eq. 1) 

where B and k are the strength and speed of the interaction, and T(0) is the value of T 

at the time immediately before the change in S occurs. This type of kinetics ensures a 

very stable behaviour of the model as a whole. This was verified by Monte-Carlo 

simulations showing that the time trajectories of variables were influenced only to a 

limited extent by variation of the speed and strength values of the interactions (data not 

shown). 

Causal interactions between variables were included in the model based on expert 

knowledge, i.e. mostly taken from review articles in highly cited literature. To perform 

simulations, a change in one or more control variables can be specified and the model 
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is run to calculate the effect in time of that change on all the non-control variables in the 

model. These effects are propagated throughout the model along the causal 

interactions specified. 

To allow for the use of data obtained from individuals that were followed over multi-year 

periods such as in the Whitehall II cohort, it was decided to increase the time span 

covered by the model to years. While this choice necessarily will reduce the available 

time resolution for the description of intervention study data, we consider that this 

choice will add to the model’s relevance for the description of T2D development as this 

is generally a multi-year process. 

2.1.1.1 Time	  scale	  
The time scales of interest are in the range from weeks to years. Typically, variables in 

the model are derived from daily averages when using data from self-monitoring 

devices. This choice avoids further complication due to diurnal variations caused by 

circadian rhythms and acute responses to events.  

The current version of the model describes a period of (roughly) six years (indicated 

by ”Long Term (6 yrs)”). Also intermediate time points “Short term (2 yrs)” and “Midterm 

(4 yrs)” are defined.  

2.1.1.2 Interaction	  specifications	  
Each interaction between two variables has three attributes, a direction, a speed and a 

strength. Interactions can be either positive (+) or negative (-). For Speed the following 

classes  are used: 

- Very slow: 1 (i.e. kinetic constant k in Eq. (1)) 

- Slow: 2 (i.e. kinetic constant k in Eq. (1)) 

- Average: 4 

- Fast: 8 

- Very fast: 20 

The Strength of the relationship denotes the amount of change that is passed from the 

cause variable to the effect variable. For instance, a strength of 1 indicates that a  

change of  0.2 in the cause variable will eventually result in an identical  change of 0.2 

in the effect variable. Thus, 100% of the change is transmitted.. The following strength 

classes are used: 

- Very weak: 0.3 
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- Weak: 0.6 

- Equal: 1 

- Strong: 1,2 

- Very Strong: 2 

2.1.2 Diabetes model v1.0 topology 

Many details of the system of interest (i.e., the biological processes operative in the 

development of T2D in humans) are largely unknown. Many datasets are available, but 

most datasets give only limited information about certain details of the system. This, 

combined with the large number of interacting components, may give rise to an 

overwhelming complexity should one want to build the model from all available data. To 

avoid too much combinatorial complexity, the number of components in the model was 

limited to certain variables that represent key processes. We focused on variables for 

which values could be determined or estimated (either directly or indirectly). Latent 

variables were needed to (1) reduce complexity and inter-individual variation and (2) 

obtain a better representation in terms of physiological (dys-)functioning. 

For some of the model components and their interactions quantitative data is available. 

However, for various components only an estimate of interactions could be made, 

based on qualitative knowledge from literature and expert opinions. An extended 

literature search has been performed to identify suitable components and obtain 

information about the form and strength of their interactions. Key findings of this 

literature study are summarized in Appendix 4.2. 

Error! Reference source not found. shows the first version of the model. Three 

domains can be distinguished, depicted in different background colors: (1) energy 

balance, (2) glucose metabolism, (3) other systemic health variables. For each of these 

three parts, the variables and interactions are discussed below. 
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Figure 1. Topology of Diabetes model V1.0 

2.1.3 Model components 

� � � �  � �  � � � � � � � 	 � � � � 
 � �
The components that describe energy balance were kept relatively simple (Figure 2). 

The caloric balance was described with only two general variables, one related to 

calorie intake (“food intake pattern”) and one related to calorie expenditure (“exercise”). 

Calorie expenditure includes energy expenditure due to resting metabolism in addition 

to energy expenditure due to exercise. For applications in which a more detailed 

description of energy balance and effects of macronutrients (carbohydrates, fat and 

proteins) on body mass and body composition is required, a Vensim implementation of 

the body weight dynamics model of Hall (2010) is available within TNO that could be 

integrated in the model. 

 
 
Figure 2. Model component: Energy metabolism 
 

Note that also more subtle effects of exercise have not been taken into account. 
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Exercise may for instance cause changes in fat oxidative capacity of muscular tissue. 

Also possibly beneficial effects of exercise on stress levels have not been taken into 

account. These and other effects of exercise/physical activity may be interesting 

subjects for further refinement and  improvement of the model. 

In the model, difference between the food intake pattern and the exercise pattern leads 

to a “Cumulative energy imbalance”, which affects the Body Mass Index over time. 

Note that Body Mass index, just like all other model variables, is described in the 

Marvel model on a 0-1 (or 0-100%) scale. The 0-1 range should cover more or less the 

whole range that the ‘real world” variable can have in reality. Therefore, to scale to real 

values, we let 0 correspond to a BMI value of 15 kg/m2 (BMI up to 18.5 kg/m2 is 

considered underweight), while 1 corresponds to a BMI of 50 kg/m2  (BMI above 30 

kg/m2  is considered obese and BMI above 40 kg/m2 is considered morbidly obese).  

The ad libitum intake setpoint describes alteration in hunger and satiety due to 

systemic health changes. Since the food intake itself is already prescribed as an input 

in the first  version of the model, there is no further downstream effect of this variable. 

Depending on the exact application, possible future model extensions could include a 

direct alteration of food intake due to a changed setpoint or the calculation of the 

discrepancy between this setpoint and the actual intake. The latter may be useful for 

predicting problems of adherence to caloric restriction (i.e., dieting). 

� � � �  � �  � � � 
 � � � � � � � � 	 � � � � � �
Due to the large diurnal variation and complex dynamics due to interactions with other 

physiological parameters, daily averages of plasma insulin and glucose concentrations 

were not directly used as model variables. Instead, the model uses fasting plasma 

levels of both insulin and glucose as well as insulin sensitivity and beta cell function as 

indicators (Figure 3).  

 
Figure 3. Model component: Glucose metabolism 
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This part of the model was inspired by the clinically established HOMA2 model 

(Wallace et al., 2004). The variables HOMA2-S and HOMA2-B in the HOMA2 model, 

are reliable indicators for the insulin sensitivity and beta cell function. Both variables 

are expressed as percentage of a standard  healthy situation. A set of plasma 

concentrations of insulin and glucose under fasting conditions can be directly translated 

into the corresponding HOMA2-S and HOMA2-B values  using the HOMA2 computer 

model (available from https://www.dtu.ox.ac.uk/homacalculator/). 

The interactions between insulin sensitivity, beta cell function and insulin and glucose 

levels that were included in the Marvel model (Error! Reference source not found.) 

can be regarded as a linearization of the HOMA2 model as depicted in Figure and 

explained in Table 1. These interactions were all assumed to be very fast. This will be 

further optimized after comparing Whitehall II data with model simulation results. 

 

Figure 4: Left: HOMA2 model. relation between beta cell function, insulin sensitivity, plasma 
insulin and plasma glucose. Right: detail with estimated trajectory of onset of type 2 diabetes 
(model of Carstensen 2010) 

Table 1. Glucose metabolism interactions 

Arrow from Arrow to Description 
Insulin 
sensitivity 

Beta cell 
function 

Under normal physiological conditions, beta cells can 
compensate for changes in insulin sensitivity such 
that normal glucose tolerance is maintained. 
Decreased insulin sensitivity leads to increased beta 
cell function (negative effect) 
Assumed to be a fast mechanism. 
See: Kahn et al. Nature 444, 840–6 (2006) 

Beta cell 
function 

Fasting 
insulin 

Linearization of HOMA2 model. Beta cells produce 
insulin.  Increased beta cell function combined with 
constant insulin sensitivity yields an increased fasting 
insulin concentration (positive effect). 

Insulin 
sensitivity 

Fasting 
insulin 

Linearization of HOMA2 model. Increased insulin 
sensitivity combined with constant beta cell function 
yields a decreased insulin level (negative effect). 
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Beta cell 
function 

Fasting 
glucose 

Linearization of HOMA2 model. Increased beta cell 
function combined with constant insulin sensitivity 
yields an decreased fasting glucose concentration  
(negative effect). 

Insulin 
sensitivity 

Fasting 
glucose 

Linearization of HOMA2 model.  Increased insulin 
sensitivity combined with constant beta cell function 
yields an decreased fasting glucose concentration  
(negative effect). 

Fasting 
glucose 

Beta cell 
function 

If prolonged high concentrations of glucose occur 
(hyperglycemia), this has detrimental effects on the 
functioning of the beta cell either due to tissue 
damage or ‘stunning‘ of the beta cells (see Ferranni, 
Cell metabolism 11, 349–52 (2010)). This is 
implemented by a negative effect that only occurs 
once the fasting glucose level exceeds a threshold 
value of 0.3. 

 

� � � �  �  � � � � � � � � � � � � � 
 � � � � � � � � � � � � � 	 � � �
As discussed above, the dark blue part of Error! Reference source not found. 

contains various non-metabolic health variables (see also Error! Reference source 

not found.). In contrast to other parts of the system, there is less detailed knowledge 

of, and much less quantitative information for many interactions in this part of the 

model. The interactions (and their signs) included in this part of the model were chosen 

based on evidence from literature (see appendices 4.2 for key findings from evaluated 

literature). However, the strengths and speeds of those interactions are generally 

unknown. Hence, rough estimates were used. Calibration of the model using datasets 

provided in WP7 should provide means to improve these parts of the model. In the 

following section, we will sequentially discuss each variable and its outward 

interactions to other variables within the model component. 

 
Figure 5. Model component: other systemic health variables 
  

The (dys-)functioning of the brain regions and neuro-endocrine systems related to 

mental stress were described by a single variable ‘chronic stress level’. This level can 

be roughly related to the activity of the hypothalamic-pituitary-adrenal axis (HPA)-axis 

and the resulting plasma levels of the ‘stress hormone’ cortisol. Chronic stress has 

been shown to reduce the protective effects of the immune systems (Dhabhar 2009). 

The pro-inflammatory cytokines produced induce low-grade inflammatory responses 
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resulting in a further increase in production of pro-inflammatory cytokines. These 

cytokines in turn induce an increase in CRP production, a well-established marker of 

inflammation (Black 2002, Gabay 1999). This effect of chronic stress on inflammation is  

defined as weak in the model. 

The “Inflammation” variable in the model refers to systemic low-grade inflammation. It 

corresponds to metaflammation which in MISSION-T2D is considered a main driver of 

T2D development (Donath 2011, Stringhini 2013). This type of sterile inflammation is 

characterized by chronically increased levels of various inflammatory biomarkers 

including C-reactive protein (CRP). As briefly discussed above this type of inflammation 

is associated with metabolic dysfunction and diabetes, although the precise order of 

causes and effects are still debated. In the model component, inflammation influences 

gut health and chronic stress, The effects of inflammation on gut health are not well 

studied. An important role of the immune system is to minimalize direct contact 

between intestinal epithelial tissue and microbiota and compartmentalize microbiota to 

certain sites (Hooper 2012). Reasoning that a chronically elevated inflammatory state 

will somewhat impair the immune defensive functioning, a weak negative effect of 

inflammation on gut health was assumed. Cytokines, with IL-6 as the main driver, and 

humoral mediators of inflammation are potent activators of the stress response. In the 

case of metabolic syndrome this stress response will remain activated through the 

presence of macrophages and other immune cells in the adipose tissue (Kyrou 2009) 

i.e. a positive effect is included.. 

Gut health is defined as a combination of barrier integrity, microbiota composition and -

function in this model. Relationships between gut microbiota function and the immune 

system are well known (Hooper 2012). For instance an increase in gram-negative 

microbiota by adopting a high fat diet increases the production of LPS, which induces 

low-grade chronic inflammation (Nicholson 2012). Evidence is  accumulating that gut 

microbiome composition is related to metabolic syndrome and obesity (Le Chatelier 

2013, Tilg 2011). In the model the (negative) effect of gut health state on inflammation 

was assumed to be slow and weak. 

Type 2 diabetes is a complex,  life-style related disease in which food consumption and 

exercise play a major role. Not only overeating has been shown to cause overweight, 

also the composition of food is essential for maintaining good health. Food quality has 

been shown to impact gut microbiota composition and -function (Ley 2006, Duncan 

2007). For instance dietary fiber is a key component of a healthy diet and evidence of 
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the positive health effects on microbiota function are accumulating (Kaczmarczyk 

2012). Another example is the increase in LPS production by gram-negative microbiota 

by a high fat diet (Nicholson 2012). It has recently become clear that even rapid 

changes in microbiota composition can occur by changing diet from animal based to 

plant based (David 2013). Therefore food quality was added as a variable to the model 

and in particular as a driver of gut health. 

A dysfunctional metabolism can lead to the accumulation of tissue damage. This may 

sometimes be reversible, but eventually also irreversible tissue damage can occur. A 

dramatic example of the latter is the occurrence of a myocardial infarction after which 

the heart irreversibly loses a part of its pumping capability. Common complications of 

chronically elevated glucose levels in untreated diabetes mellitus are retinopathy 

(which ultimately can cause blindness) and kidney failure. Currently, the description of 

tissue damage does not distinguish between different tissues but does differentiate 

between reversible and irreversible tissue damage. The only exception are the beta 

cells in the pancreas, for which the damage is included in the decreased value of ‘beta 

cell function’ at elevated glucose levels. The tissue damage is assumed to accumulate 

once fasting glucose levels exceed the Fasting glucose threshold (which is also used 

for the effect on beta cells). The detrimental effects are countered by tissue repair 

mechanisms which are also present as a variable in the model. 

Damaged tissue was assumed to contribute to the inflammatory tone, as implemented 

by a positive influence on the Inflammation variable. The decreased function of organs 

due to accumulation of tissue damage may have many systemic health effects. 

Currently, only the effect on gut health was included, but this can be extended in future. 

 

2.1.3.4 Interactions	  between	  model	  components	  
 
Once the Body Mass Index in the model exceeds the threshold of 0.4 (corresponding to 

a BMI of 29), it starts suppressing insulin sensitivity and activating inflammation. 

Inflammation has a negative effect on insulin sensitivity. The arrows in this “triangle” are 

still subject of scientific debate. There is a clear association between overweight on 

one hand and systemic inflammation and insulin resistance on the other. However, the 

precise mechanisms are still debated as well as what is causing what downstream of 

the overweight. 

In the first model version the links between glucose metabolism and tissue damage 

were highly simplified. Future model version may also take into account key aspects of 
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lipid and cholesterol metabolism and the deleterious effects of dyslipidemia. In addition, 

explicitly including atherosclerotic plaque formation into the model can lead to a more 

accurate description of the links between disturbed metabolism and cardiovascular 

disease. 

The influence of the stress level on the metabolism was considered to be two-fold. 

Firstly, stress can lead to an increased food intake (Dallman 2003), which we 

implemented by a positive influence on ‘Ad libitum intake setpoint’. As discussed 

above, this setpoint currently has no downstream influence, but may be connected in a 

future version of the model. Secondly, stress was assumed to lead to a decreased beta 

cell function (based on mouse data from Delauny 1997 and human associations 

discussed in Anagnostis 2009). The model does not include a direct effect of stress on 

insulin sensitivity. As there are indications that such a mechanism may occur as well 

(Anagnostis 2009), this mechanism should be considered for future version of the 

model. 

2.1.3.5 Control	  variables	  
The model contains three control variables, i.e. variables that can be set before running 

model simulations.  

Food intake pattern indicates the amount of calories that are consumed. Obviously this 

is an important factor for type 2 diabetes, both as a risk factor as well as an often-used 

intervention. This control variable can be used to simulate weight reduction 

interventions. Therefore this control variable is connected to the Cumulative energy 

imbalance variable.  

Exercise pattern is a variable that represents calories burned, and includes basic 

metabolic rate in this version of the model. In future model versions this element could 

be modelled as a separate variable, leaving Exercise pattern as a variable exclusively 

for calories burned due to physical activity. This control variable is used to simulate the 

effects of increasing or decreasing exercise. 

The third control variable is called ‘Sleep, meditation, relaxation’ and used to represent 

interventions for reducing  or environmental factors that  increase chronic stress levels. 

Sleep debt and sleep fragmentation are associated with increasing chronic stress 

levels. Patients with those particular problems might benefit strongly from interventions 

to improve sleep quality. Meditation and relaxation are interventions that are proven to 

reduce stress levels. This variable therefore also represents specific treatment options 

such as mindfulness-based stress reduction that can be useful for type 2 diabetes 
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patients (Merkes 2010). 

2.1.4 Model simulation results 

The model can be used to evaluate the effects of life style changes on various aspects 

of human health, especially T2D development. As an illustration, in this document three 

scenario simulation examples are shown. In all three simulations we assumed an 

apparently health, overweight individual (BMI ± 25).  

In the first scenario, over the course of 6 years, we assumed this person would 

consume too much food (0.2 on the scale of 0 to 1 more  on a daily basis than the 

energy requirements for basal metabolism and physical activity). Error! Reference 

source not found. shows the simulation result i.e. an increasing Body Mass Index, 

accompanied  by a slight deteriorating of various other health indicators. Insulin 

sensitivity started to decrease slightly after 2 years and systemic inflammation slowly 

rose over the course of the six years. The fasting glucose levels remained  stable 

because the reduction in insulin sensitivity was compensated by an increase in 

pancreas function.  

 
Figure 6. Simulation of 0.2 overeating per day. 
 

The second scenario simulated the development of diabetes after sustaining an even 

larger energy imbalance (0.65). Figure 7 shows that fasting glucose levels did not 

remain stable but started to rise after the short term period. Around the mid term 

period, an acceleration of this rise in fasting glucose was seen. BMI kept increasing but 

levelled off at a maximum. The simulation also showed that the compensatory function 
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of the pancreas reached a maximum and then decreased. This represents the damage 

that the pancreas will eventually take if it is not able to compensate for the increased 

glucose levels anymore. The timing of this event corresponded to the start of the strong 

rise in fasting glucose levels.  Inflammation was also rapidly increasing after pancreas 

failure. 

Figure 7. Simulation of the development of diabetes (0.65 overeating per day) 

The third scenario (illustrated in Figure 8) shows a simulation of the effects of a life-

style intervention on early stage Type 2 diabetes. First an overweight hypothetical 

subject was assumed to consume much more energy than expended (similar to 

scenario 2). After 4 years, at mid-term, this subject decided to change lifestyle in such a 

way that energy expenditure was larger than intake for the rest of the time. The 

simulation result shows that insulin sensitivity, BMI as well as inflammation all improved 

after this change. There still was a rise in fasting glucose levels at short term, but 

instead of an acceleration of the rise at mid term, fasting glucose started to normalize. 

Apparently, the pancreas was able to compensate for most of the decreased insulin 

sensitivity during the first stage of the scenario, and did not develop permanent 

damage thanks to the lifestyle change at mid term. 
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Figure 8. Simulation of 0.65 energy excess per day up to mid-term. After 4 years a lifestyle 
change was made towards more energy expenditure than intake (0.60 intake, 1.0 expenditure). 
 

2.2 Diabetes model quantification 

Although the modelling approach that was chosen for this project is semi-quantitative in 

nature, an attempt was made to relate the model variables, the strengths and speeds 

of the relationships to real data. The process of quantification consisted of the following 

steps: 

- Selection of variables to quantify 

- Selection of the variable ranges 

- Selection of the transformations to map Marvel variables to true variable ranges 

2.2.1 Selection of variables to quantify 

Several variables were selected for quantification based on the relevance for diabetes 

patients as well as the availability of a real measure for the variable. BMI is a key 

variable that can be determined from body weight and length measurements. Fasting 

glucose and fasting insulin can be measured in blood samples. Beta cell function and 

insulin sensitivity can be calculated using the HOMA2 model, an algorithm described in 

Wallace 2004, based on measured fasting glucose and insulin. Calorie intake and 

expenditure must be quantified since they constitute the key control variable in the 

model. Calorie intake can be calculated based on food intake diaries, and obtained by 

using apps such as Fat Secret (http://www.fatsecret.com). Energy expenditure can be 

measured by several devices such as FitBit, ViaFit, Active8, and Basis. As also 
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concluded in WP5, and documented in Deliverable 5.1, although the reliability of such 

devices is still under debate, a rough estimate can still be given and individual changes 

over time can be monitored (Danecker 2013). Inflammation can be estimated by C-

reactive protein measurements in blood samples. A reasonable estimate of chronic 

stress could be the measurement of hair cortisol levels. An acceptable proxy for Gut 

health could be serum LPS levels. A quantification of the gut health variable is not 

implemented in the model yet. 

2.2.2 Selection of the variable ranges and Marvel value transformations.  

The next step in the quantification of the selected variables was to determine 

physiological ranges of the variables and mapping those ranges on the Marvel range of 

0 to 1. In Figure 9 below, the mapping of the variables is shown. The X-axis is always 

the Marvel range of 0 – 1, while the Y-axis represents the real measurable range of the 

respective variable. 

 

 



    
           
 
 

FP7- 600803    [D4.2 – v2.0]    Page 19 of 33 

 
 

 

Figure 9. Variable mappings 

Based on the physiological ranges of the variables and the mappings, formulas were 

constructed to convert real measured values into marvel ranges and back again. Table 

2 shows the formula’s for each of the variables. The table also indicates the starting 

values of the variables and the related real values. Currently the model is set for an 

overweight person (BMI is 25) with a fasting glucose level of 4,36 mmol/l, a properly 

functioning pancreas (beta-cell function is 100%), fasting insulin is also good (100 

pmol/l), inflammation is assumed to be 0 (CRP is 0 mg/l), insulin sensitivity is good 

(HOMA-s is 100%). The quantification of the variables now allows setting the model for 

persons with a different set of starting values, for instance reflecting a pre-diabetic or 

diabetic state. Values for the variables can be gathered from medical records or 

measured using do-it-yourself technology to provide input for the model. 

 

Table 2 

Variable name Type 
Valid M 
range 

Real 
range 

M start 
Value 

Real 
start 
value Marvel -> Real Real -> Marvel Measure 

Ad libitum intake 
setpoint 0-1 0,5

Beta cell 
function Goal 0-1 

6,25 - 
200 % 
(log) 0,8 100% 

HB=10^((MHB*
1,51)+0,8) 

MHB=(Log10(H
B-0,8)/1,51 HOMA2 %B 

Chronic stress 
level   0-1   0,0       

Hair cortisol 
levels 

Cumulative 
energy 
imbalance   0-1   0,3         

Exercise pattern Control 0-1 
0 - 5000 
kcal 0,0 0 EP=MEP*5000 MEP=EP/5000 

Daily 
calories 
burned 

Fasting glucose Goal 0-1 

2,5 - 40 
mmol/l 
(log) 0,2 

4,36 
mmol/l 

FG=10^((MFG*
1,20)+0,4) 

MFG=(Log10(F
G)-0,4)/1,20 

Fasting 
Glucose 

Fasting glucose 
overload   0-1   0,3         
Fasting glucose 
threshold   0-1   0,3         

Fasting insulin   0-1 

15 - 240 
pmol/l 
(log) 0,7 

100 
pmol/l 

FI=10^((MFI*1,
20)+1,18) 

MFI=(Log10(FI)
-1,18)/1,20 

Fasting 
Insulin 
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Food intake 
pattern Control 0-1 

0 - 5000 
kcal 0,0 0 FI=MFI*5000 MFI=FI/5000 

Calorie 
intake 

Food quality   0-1   0,2         

Gut health   0-1   0,8       serum LPS 

Inflammation Goal 0-1 0-10 mg/l 0,0 0 mg/l I=MI*10 MI=I/10 CRP 

Insulin 
sensitivity Goal 0-1 

16,1 - 
300 % 
(log) 0,6 100% 

HS=10^((MHS*
1,27)+1,21) 

MHS=(log10(H
S-1,21)/1,27 

HOMA2 %S 
Irreversible 
tissue damage   0-1   0,1         

Organ function   0-1   0,9         

Body Mass 
Index Goal 0-1 

15 - 50 
kg/m² 0,3 25 

BMI=MBMI*35+
15 

MBMI=(BMI-
15)/35 

0 = 15 
kg/m², 1 = 
50 kg/m² 

Peripheral 
energy overload   0-1   0,4         
Reversible 
tissue damage   0-1   0,2         
Sleep, 
meditation, 
relaxation Control 0-0.5   0,0         

Tissue damage Goal 0-1   0,2         

Tissue repair   0-1   0,0         
Overload 
threshold   0-1   0,4         
 

2.2.3 Model calibration 

After setting the ranges of the variables, the following model parameters were 

calibrated: starting values of the variables, strengths of the relationships and speeds of 

the relationships. The first estimation the these parameters was done based on the 

literature described in the previous section in addition to TNO expert judgement.  

First of all effect of energy imbalance on BMI change was calibrated. We adopted the 

results of the Hall model (Wallace 2004) as a benchmark for the model performance. 

According to the Hall model a reduction in consumption of 100 kcal per day would lead 

to 1 kg of weight reduction in 3 years. The current model only gives BMI change. For 

this simulation we chose to calculate weight change from the BMI change for an 

average person height of 180 cm. The results from the Hall model are compared with 

the model simulation in Figure 10. It can be observed that the model performs very 

similar to the Hall model for the range of excess calorie consumption between 500 kcal 

and 1500 kcal over 3 years. 
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Figure 10. Comparison of the model with the Hall model (blue line represents the 

diabetes model simulation results and the red line the Hall model). 

The next calibration action was based on four papers describing relationships between 

BMI changes and insulin, glucose, triglycerides, IL-6, TNF- � , IL-18, adiponectin, leptin, 

CRP, HOMA2-B, HOMA2-S and HOMA2-IR (Esposito 2003, Goldberg 2009, Agueda 

2012, Dvorakova 2006). The average change in the parameters was calculated per 

BMI point change measured in the subjects (Table 3).  

� � � � � � � � � � 
 � � � 	 � �  � � � �  � � �

� �
�

� � � � � � � �  � � � � � � � � � � � �
� � � p	    p� o � �  � � � � s� � � Ei � � � � � t  s� �  t � � � �
� � pi � � � � 4 � � � pi � � � � g	   �  � e� A� ( dn� kd) � ( d) � ↓dk� ↓d( �

� � i �  p� � 4 � � i �  p� � g� �  � e� A Ddv Ddv DdD DdD Ddv

os� � � 4 � os� � � l � � s� � � p� g� � e� � A� ↓d) � kdk� mDd( � vdn� v/dk�

� � � � � 8 4 � 
 � rm� g	   � e� � A� Ddk� � � DdD� rDd5� rDdk�

� � � � 4 � �  � � � g	   � e� � A� � � � � Ddv� � � Ddv�

� � � � 4 � 
 � rv) � g	   � e� � A� v( dD� � � � � � � v( dD�

� � o� r� � � � � 8 4 � � � � 	    � � � o� � � gi � e� � A� rDdm� � � Dd↓� Ddk� DdD�

� � 	   o� � 4 � � � 	   o� � � � � � � mdm� � � mdm�

� � � � 4 � � � � � g� � e� A� Ddn� Dd5� Ddv� Dd( � Dd( �

� � o� � � � � � � 4 � 	 � � � k � 2 � � vd) � rvdn� ( dm� kd( � kdk�


 � p� p� � p8 � 	 � � � k � 2 � � r( dv� rkd↓� rvDd/ � r( dD� r( d) �


 � p� s� p4 � 	 � � � k � 
 � � Ddv� Ddv� Ddv� Ddv� Ddv�

q� 	    p� t � � i � pb� �  � p� i 	   � G � o� � � � � s� � p� � � � � � 
 d� � � � � t � � i � pb� �  � p� �  G � � G � o� � � � � s� � p� � � � � � 
 �
 
 



    
           
 
 

FP7- 600803    [D4.2 – v2.0]    Page 22 of 33 

 
 

BMI change was then simulated using the model by increasing Food intake pattern to 

0.1, 0.2 and 0.3. The effects on the fasting insulin, beta-cell function and insulin 

sensitivity after 2 and 4 years were extracted from the model simulations and 

compared to the calculated expected values based on the literature presented in Table 

3. In Figure 11 the model results and the estimations from the literature were 

compared. 
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Figure 11. Comparison of model simulations with literature estimates (blue lines 

represent the model simulation results, the red lines represent the estimations from the 

literature). 

 

The model simulations for fasting insulin, insulin sensitivity and beta-cell function show 

the same trends as the literature estimates. However, the effect size differs between 

the simulations and the literature. This indicates that the model settings for the 

strengths of some relationships will have to be adjusted. This will be done with the help 

of datasets collected in WP7. The same holds for the settings of the speeds of certain 

relationships in the model, since for instance  the simulated rate of change in beta-cell 

function is different from literature findings. However, the literature findings show 

considerable variation, indicating that the results might be different in different 

populations. We conclude that for a first calibration,  the model seems to perform 

reasonably well on these variables. After a proper calibration using the data from WP7,  

it is foreseen to validate the model using data from the Whitehall II cohort. 

 

2.3 Connection between diabetes model and NRC database 

The aim of the project is to produce tools that can be used in clinical practice to support 

patients in managing diabetes. An important step towards this aim is to connect the 

systems health model with a database containing real patient data. We choose to 

develop such a connection with the Nutritional Researcher Cohort (NRC) database that 

is currently running at TNO (http://www.nugo.org/nrc and http://ci.dbnp.org). This 

database contains data uploaded by hundreds of people mainly measured with Do-It-
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Yourself techniques. Additionally, the database can be used to upload other medical 

data obtained from other sources.  

Establishing the connection between the NRC and Marvel entailed the following steps: 

- Establishing a web based service for the model 

- Developing an API to access the web service 

- Developing a user interface to interact with the model 

A web service was developed that is able to run Marvel models. A number of functions 

were made available to upload new models, to set model variables and to receive 

simulation results. The API for accessing the service currently enables accessing the 

NRC database to extract calorie intake and calorie expenditure. These values are 

converted into Marvel variable ranges (between 0 and 1) using the conversion rules 

specified in Table 2. The values are sent to the model on the web service which returns 

model simulation results. In addition, a first version of a user interface is developed as 

shown in Figure 12.  Currently this user interface shows 4 main objects of information. 

In the upper left part of the dashboard, information on population minimum, maximum 

and average values of weight, calorie intake and calories burned is given. This 

information is extracted from all the individual datasets in the NRC database. This data 

is mainly used for development purposes and will be removed from future user 

interfaces. A second box contains the personal status of the subject logged into the 

tool. Weight, calorie intake and burned calories averaged over a month is shown. Then 

to the right of this box are two slide bars that can be used to simulate the effects of 

changing eating (calorie intake) and exercise (calories burned) behaviour.  
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Figure 12. User interface of the MT2D simulation tool connected to the Nutrition Researcher 
Cohort and database. 
 
 

The bottom part of the dashboard is used to present the current levels of all the 

variables present in the diabetes model v1.0 as well as the results of the simulation. 

Each variable is represented by an individual vertical bar graph. The black arrow 

represents the variable, the start point of the arrow is the current value while the end 

point  of the arrow is the result of the simulation. The bars are furthermore colour-

coded, green meaning good (healthy) while red and blue indicate impaired health 

zones, the marker being either too hogh or too low, respectively.. .An arrow pointing 

towards  the center of the green zone generally indicates improvement and an arrow 

pointing away from the center of the green zone a worsening. The sizes of the arrows 

can be interpreted as relative strengths of the effects. In this way, the user can get 

immediate feedback on the expected result of a lifestyle change.  

Currently, the user can simulate the effects of calorie intake change and calorie burned 

change over time, based on his or her own weight, calorie intake and consumption 

levels.  

2.4 Future work 
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In the near future, measured values for fasting glucose, fasting insulin, insulin 

sensitivity, beta-cell function and inflammation will be implemented in the model. This 

means that measurements of those variables stored in the NRC database must be 

extracted from the database and loaded into the model. Then simulations can be 

performed with this more personalized model. The results can then be translated back 

into changes in real values of those variables over time. This allows a more 

personalized prediction of intervention effects and more detailed information about 

metabolic changes. 

Additionally, the model will be calibrated by using data from several datasets collected 

in WP7.. The aim is to use such a combination of data sets that all the variables in the 

model are represented in at least one data set. After this extensive calibration step the 

model will be validated using Whitehall 2 data. The simulation model will then be able 

to also generate meaningful predictions for different time spans, allowing the user to 

see expected results of lifestyle changes on the short-, mid-, and long-term. 

 

3 Deliverable Conclusions 

A version 1.0 of a high-level aggregation model of diabetes was developed integrating energy 

metabolism, glucose metabolism, inflammation and other system health variables. This model 

was programmed in the TNO Marvel software, with all variables scaled between 0 and 1. The 

model was then quantified by defining ranges for variables and providing formulas to convert 

real values of BMI, fasting glucose, fasting insulin, insulin resistance, beta-cell function and 

inflammation to Marvel-values. This allowed a first calibration of the model based on literature 

data which showed promising model simulation results. Finally, a prototype user interface was 

developed as well as software (API) to connect the model with a database containing individual 

data derived from self monitoring devices (i.e., the NRC database). The prototype model can 

now be applied to simulate interventions based on personalized data collected from portable 

devices and stored in the NRC database. Future versions of the model and user interface will 

include the quantification of additional systems health variables, and allow for more accurate 

predictions after more extensive calibration and validation of the model is done based on data 

provided in WP7. 

 

4 Appendices 

4.1 List of abbreviations used 
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BMI Body Mass Index 

CRP C-reactive protein 

HOMA Homeostatic Model Assessment 

HPA Hypothalamic Pituitary Adrenal axis 

IL Interleukin (signalling molecule) 

LPS Lipopolysaccharide (component of pathogen cell walls, signal of danger) 

NRC Nutrition Researcher Cohort 

P4 Personalized, preventive, predictive, participatory 

T2D Type 2 Diabetes 
 

4.2 Literature results related to the model 

4.2.1 Gut health interactions (Gut health, inflammation and diet) 

Key findings: 
- LPS (endotoxin) concentration in blood plasma is a common marker for (impaired) gut 

barrier function. 
- The most clear diet effects are those of a high (saturated) fat diet 
- Short term effect: high fat meal yield an increase in plasma LPS (e.g. Ghanim et al. 

Diabetes care 2009 (32): 47% increase of LPS at 3 hours after high fat meal, compared 
to overnight fasting state). This also leads to some effects in inflammation markers: 
57% increase in NF-κB binding, 7% increase in CRP (not significant) 

- Short term effect of high-fat meal on inflammation markers stronger in diabetic subjects 
compared to healthy subjects 

- Long term effect of high-fat and “healthy diet” compared to original diet of subjects: 4 
weeks of high fat diet lead to a 71% increase of plasma LPS, 4 weeks of “healthy diet” 
leads to a 31% decreased in plasma LPS (Amar et al. Gastroenterolgy 142, 2012). 
However, no increase in inflammation observed! Thus, no clue provided that long-term 
high-fat diet alone can induce inflammation. 

- Grouping of healthy men according to endotoxin levels, shows that increased endotoxin 
levels are associated with high fat in (long-term) diet (Amar et al. The American Journal 
of Clinical Nutrition 2008). However, no effect on IL-6. 

- Mouse data (Cani 2008), shows significantly increased mRNA expression in tissues of 
some pro-inflammatory markers after either 4 weeks of high fat diet or 4 weeks 
subcutaneous LPS infusion 

- Obese, diabetic and subjects with impaired glucose tolerance display a decreased 
barrier function (Harte al et al. Diabetes Care 2012 (35)). Note: no indication if 
obesity/diabetes has any influence on the barrier function. 

- Link with stress systems unclear: Taudorf at al. (Clinical and Vaccine Immunology 2007 
(14)) shows acute effect of LPS on TNF-alpha but not on plasma cortisol in human. 
According to Noti et al. (The Faseb Journal 2010 (24)), a single dose of LPS does 
stimulate glucocorticoids via TNF-alpha (mouse data).  

- The complex mechanisms in linking LPS and inflammation are not fully understood. 
Mechanism such as endotoxin tolerance and endoxin priming (Fu 2012) may contribute 
to this complexity. 

- In short, high fat diets increase fasting plasma LPS levels. There is no conclusive proof 
that this diet-induced low-grade-endotoxemia causes/increases low-grade inflammation 
in man. However, mouse data suggest such long-term effects. Note that the 4-weeks 
effect is different in mice and man. Although this may reflect differences in experimental 
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conditions (e.g. strengths of stimuli/dietary intervention), this also provides an indication 
that pro-inflammatory effects of high-fat diet and LPS are much slower in humans 
compared to mice. 

4.2.2 Overweight, insulin sensitivity, inflammation 

Key findings: 
- Data sets available for 

o Comparisons between groups (e.g. morbidly obese vs healthy control) 
o Lifestyle interventions (change of dietary intake; 6 months - 2 years) 
o Drug effects (e.g. metformin) 

- Focus on data from adults (weight 80-90 kg; BMI 30-35) and weight-loss due to lifestyle 
interventions 

- For modeling purposes in this project, this data can be used to calculate change of 
HOMA2-indices (HOMA2-%S, HOMA2-%B) and inflammation (CRP) with change of 
body weight or BMI. 

- CRP decreases with weight loss (0.09-0.54 mg/l per unit BMI) 
- Beta cell function (HOMA2-%B) can either decrease or increase with weight loss 

(decrease of 5.6 percentage point per unit BMI and increase up to 1.3 percentage point 
per unit BMI have been reported) 

- Insulin sensitivity (HOMA2-%S) increases with weight loss (2.4 – 10.7 percentage point 
per unit BMI) 

4.2.3 Beta cell failure 

Key findings: 

- The precise mechanisms of beta cell dysfunction are still largely unknown; Individual 
trajectories for onset of beta cell dysfunction may differ (Kahn 2006, Gastaldelli 2011)  

- Chain of events: 
o Decreased insulin sensitivity compensated by increased beta cell activity; this 

occurs in various cases, incl. obesity, puberty, pregnancy (Kahn et al., Nature 
2006) 

o In some cases the demand for additional insulin production to compensate for 
increased insulin resistance is larger than the capabilities of the beta-cells (this 
threshold may be individually determined due to genetic predisposition etc.). 
This results in slightly increasing fasting glucose levels (which may pass the 
threshold levels for diagnosis of pre-diabetes or even diabetes).  

o Long-term increased (fasting) glucose levels may lead to loss of beta-cell 
functionality due to mechanisms such as glucose toxicity. This may include 
reversible “stunning” effects (Ferrannini Cell Metabolism 2010). 

- The long-term change in (2-hr postprandial) glucose levels seems to develop in two 
phases: a slow approximately linear rise and a steeper rise during the period before the 
diagnosis of diabetes. This period is estimated to be much shorter than 4 years (Mason 
et al. Diabetes 2007) 

- Ferrannini Diabetes 2004 estimate the rise in plasma glucose during the fast onset of 
diabetes 2-3 mmol/l per 3.25 years ! 0.6-0.9 mmol/l/year 

- Tabák (Lancet 2009) describes a fitted time course of HOMA2-indices and fasting 
glucose for a subgroup (“cases”) in the Whitehall II consortium over the 14 years before 
the diagnosis of type 2 diabetes. This is compared with estimates for another subgroup 
(“non-cases”) that does not develop diabetes. 
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4.2.4 Stress Systems 

Key findings: 

- Focus on increased HPA axis/cortisol levels (although endocrine dysregulation may 
also act in the opposite direction). 

- Increased HPA axis activity leads to increased eating (Dallman 2003). 
- Chronic stress has negative effect on immune function (Dhabdar 2009). However, it 

may still increase low grade inflammation due to suppression of 
immunoregulatory/inhibitory (anti-inflammatory) mechanisms  

- Inflammation activates stress pathways (Kyrou and Tsigos 2009) 
- Glucocorticoids in mice inhibited insulin release (Delaunay 1997). In human also 

associations between cortisol levels and both insulin secretion and insulin sensitivity 
(Anagnostis 2009 and references therein). 
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