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Executive Summary 
 

In this deliverable we describe the work done in the 
development of multi omic metabolic models of gut microbiota 
bacteria to provide clues on the effects of the bacteria on gut 
environment and the interaction with the immune system 
inflammation in the gut. Moreover, we have used machine 
learning techniques to compare clinical and control data as normal 
autoimmune, diabetes and arthritis-related diseases and identified 
key biomarkers occurring during infectious diseases such as 
osteomyelitis. This is a new methodology for the analysis of 
signaling factors in T2D and autoimmune diseases. 

The study is intended as a refinement of the previous 
inflammatory model and evidences the relationships between 
inflammation and gut microbiota. 
 

Keywords At least four keywords 
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1 Overview 

Among the research activities in the context of Mission-T2D project we have 

performed research on: 1) development of multi omic metabolic models of gut 

microbiota bacteria. We have considered beneficial and pathogenic bacteria 

(pre and post infection metabolism). This provides clues on the effects of the 

bacteria on gut environment and the interaction with the immune system in the 

gut. In the following section, we will describe a multi omic metabolic model for 

pathogenic gut bacteria (clostridium difficile). Our methodology is novel because 

integrates different information (metabolic map and transcriptome); 2) Machine 

learning of patients versus normal autoimmune, diabetes and arthritis-related 

diseases data. We have identified key biomarkers occurring during infectious 

diseases such as osteomyelitis. We present here a new methodology for the 

analysis of signaling factors in T2D and autoimmune diseases. This 

methodology integrates epigenetic and transcriptomic data and is able to 

identify new disease associated genes. For both aspects publications have 

been submitted. 

2 Multi omic metabolic model of gut microbiota bacteria 

Clostridium difficile is a bacterium, which can infect various animal species, 

including humans. Incidence of infection with this bacterium is increasing in both 

frequency and severity. A better understanding of this organism and the 

relationship between its genotype and phenotype is essential to the search for 

an effective treatment. We reconstructed the metabolic model of this bacterium 

and analyzed it using sensitivity and robustness analysis. The standard 

metabolic model cannot account for changes in the bacterial metabolism in 

response to different environmental conditions. To account for this limitation, we 

integrated transcriptomic data, which details the gene expression of the 

bacterium, in a wide array of environments. To bridge the gap between gene 

expression levels and protein abundance, codon usage data was incorporated 
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in the model and the metabolic fluxes were assumed to be proportional to this 

protein abundance. 

We validated this model by comparing model predictions with biological 

rationale, formed from analyzing literature on C. difficile. The model was able to 

predict various facets of the bacterium's metabolism. However, to use the model 

to gauge the efficacy of treatments in vivo, the metabolic network must be 

refined through inclusion of additional reactions. We believe this multi-omic 

model will be an important resource for better understanding this bacterium and 

devising effective treatments against infection.  

 

2.1 Introduction to metabolic models 

Clostridium difficile is a gram-positive, spore-forming, anaerobic bacterium, 

which infects or colonizes various animal species. Clinical manifestations in 

humans include asymptomatic colonization, mild diarrhea, pseudomembranous 

colitis, and death. Recently, C. difficile has ben recognized as one of the most 

dangerous bacteria growing in healthcare facilities worldwide [1]. The primary 

risk factor for development of C. difficile infection among hospitalized patients is 

antibiotic use, which disrupts the normal colonic microflora, and provides a 

niche for C. difficile to multiply and produce toxins [2]. Incidence of infection with 

C. difficile is increasing in both frequency and severity, and is contributing to 

considerable morbidity and mortality [3]. 

A model of the genotype-phenotype relationship of C. difficile's metabolism can 

be used to understand this bacterium and to identify potential drug targets. 

Methods to model the genotype-phenotype relationship range from stochastic 

kinetic models to statistical Bayesian networks. Kinetic models are limited, as 

extensive experimental data is required to determine the rate laws and kinetic 

parameters of biochemical reactions. An alternative to kinetic models is 

metabolic modeling, which has been used to depict a range of cell types from 

microbes to higher organisms without the need for difficult-to-measure kinetic 

parameters [4]. 
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Metabolic models have been able to successively predict a range of cellular 

functions, such as cellular growth capabilities on various substrates and the 

effect of gene knockouts on the genome scale [5]. 

Metabolic models require a well-curated genome-scale metabolic network of the 

cell. Metabolic networks contain all the known metabolic reactions in an 

organism, along with the genes that encode each enzyme involved in a 

reaction. These networks are constructed based on genome annotations, 

biochemical characterizations, and various published literature on the target 

organism. The different scopes of such networks include metabolism, 

regulation, signaling, and other cellular processes [5]. 

Organisms such as Escherichia coli have been well studied and their metabolic 

networks continuously refined [6]. In contrast, there is a paucity of experimental 

data and literature on C. difficile strain 630 due, in part, to the organism's 

pathogenicity, which restricts the number of researchers actively studying it. As 

such, the first network for this bacterium was published in 2014 [7]. Despite the 

success of metabolic modeling in capturing large-scale biochemical networks, 

the approach is limited as it describes cellular phenotype simply in terms of 

biochemical reaction rates and is thereby disconnected from other biological 

processes that impact phenotype. Moreover, metabolic models cannot account 

for changes in the metabolism of the bacterium in response to different 

environmental conditions. To overcome this limitation, in this work we used the 

network published in [7] to create a multi-omic model for C. difficile. More 

specifically, we integrated a wide array of omics data into the metabolic model 

to improve its predictive power. Recent advances in the omics technologies, 

such as genomics (genes), transcriptomics (mRNA), and proteomics (proteins), 

have enabled quantitative monitoring of the abundance of biological molecules 

at various levels in a high-throughput manner. Transcriptomic data has been 

shown to be effective in improving model predictions of cellular behaviour in 

different environmental conditions [8]. 
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To bridge the gap between gene expression data and protein abundance, we 

accounted for the codon usage bias of the bacterium. During translation of a 

mRNA to a protein, the information contained in the form of nucleotide triplets 

(codons) in the RNA is decoded to derive the amino acid sequence of the 

resulting protein. Most amino acids are coded by (2-6) synonymous codons. 

These codons, which code for the same amino acid, are surprisingly used 

differentially in protein-encoding sequences. The codon usage has been found 

to alter the translation time and the abundance of the resulting protein [9]. 

Here we present the first integrated model of the metabolism of C. difficile strain 

630. We incorporated gene expression data to create context-specific models of 

metabolism. We also used the Codon Adaptation Index (CAI) to bridge the gap 

between gene expression levels and protein abundance in genome-scale 

models. We gauged the model with regards to its global robustness. We 

assessed the robustness of the model to changes in availability of metabolites 

and to varying fluxes through essential reactions. To validate the model, we 

compared model predictions to literature on C. difficile, highlighting strengths 

and room for improvement of the current version of the model. Finally, we 

identified metabolic pathways that could yield drug targets using network 

sensitivity analysis. The model and the associated code are compatible with the 

COBRA 2.0 toolbox [10]. 
 

2.2 Methods and Materials 

2.2.1 Constraint-based Reconstruction and Modeling Approach 

One constraint-based method for simulating the metabolic steady state of a cell 

is flux-balance analysis (FBA), which can be used to analyse the metabolic 

network solely on the basis of systemic mass-balance and reaction capacity 

constraints. FBA simulations have been able to capture microorganism growth, 

nutritional resource consumption, and waste-product secretion rates of various 

cell types [11]. 
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The first step of FBA involves representing the metabolic network in the form of 

a numerical matrix S of size (m x n). This matrix contains the stoichiometric 

coefficients of each of the m metabolites in the n different reactions. In the 

matrix, each row represents one unique metabolite and each column represents 

one reaction. The stoichiometric matrix helps enforce a mass balance constraint 

on the system. The mass balance on the cell for i=1,...,m metabolites and j 

=1,...,n reactions constrains the metabolite concentrations xi, as shown in 

Equation 1, where vj is the flux through reaction j. 

dxi/dt=Σj=1..n Sijvj; i = 1,.. m      (1) 

Under the steady state assumption, dxi/dt = 0; ∨i and the total amount of any 

compound being produced equals the total amount being consumed: 

Σj=1..n Sijvj=0; i = 1,.. m     (2) 

In most metabolic models, there are more reactions than there are compounds. 

Because there are more unknown variables than equations (n>m), any v that 

satisfies Equation 2 is considered to be in the null space of S. 

FBA can be used to find and determine points within the solution space that are 

most representative of the biological system using linear programming methods. 

Studies have revealed that metabolic fluxes in microorganisms are best 

predicted by maximizing the cellular objectives of growth [11]. To determine the 

point corresponding to the maximum growth rate within the constrained space, 

the objective function shown in Equation 3 is maximized, where z is a linear 

combination of the fluxes. The f is a vector of weights and indicates how much 

each reaction flux contributes to the biomass objective function. The maximum 

growth rate can be achieved by determining the flux distribution v that results in 

maximal biomass flux. 

z = fT v       (3) 

Additional constraints can be added through the upper bound vj
U and the lower 

bound vj
L j for the flux vj . These bounds mandate the minimum and maximum 

fluxes allowed for a certain reaction and further decrease the space of allowable 

flux distributions for the relevant system. The mathematical representation of 
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the metabolic reactions, the objective function, and the capacity constraints 

define a linear system as shown in Equation 4. 

max fTv  

subject to Sv = 0 

vjL≤ vj ≤ vj
U, j = 1, … n       (4) 

The model fluxes are usually given units of mmol/gDWh, where gDW is the dry 

weight of cell mass in grams and h is the reaction time in hours. The bounds 

enforce thermodynamic constraints by dictating whether reactions are reversible 

or irreversible. The lower and upper flux bounds were arbitrarily chosen to be -

1000 mmol/gDWh and 1000 mmol/gDWh for reversible reactions. For 

irreversible reactions, vj
L was chosen to be 0 mmol/gDWh and vj

U was set to 

1000 mmol/gDWh. The biomass production equation was extrapolated from 

Bacillus subtilis, the closest organism for which biomass constituent data was 

available [12]. The biomass reaction in the network is scaled such that the flux 

is equal to the exponential growth rate of the organism, which has units of h-1. 

 

2.2.2 Multi-objective Optimization in Metabolic Models 

One limitation of using only biomass as the objective is that such an approach 

ignores specific protein costs and benefits, and their effects on the remaining 

capacity of ribosomes and cytosolic space. The existence of such trade-offs 

between energy production and protein costs is not accounted for when using 

only biomass as the objective [37]. Furthermore, the biomass objective vector is 

usually perpendicular to one of the surfaces of the solution space of the FBA 

problem. For this reason, biomass maximizing flux states are usually 

degenerate; there exist multiple flux distributions that yield the same maximal 

biomass value [38]. To choose between the various flux distributions, additional 

criteria must be considered. For these reasons, we modelled metabolism as a 

multiobjective phenomenon. We used a multi-objective optimization approach to 

address the k conflicting objectives, as shown in Equation 5. 

max y = f(x) = (f1(x), f2(x), …,fk(x)) 
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subject to Sv = 0 

vjL≤ vj ≤ vj
U, j = 1, … n       (5) 

Because the optimality goals in metabolism are often different and are 

simultaneously competing, the scalar notion of “optimality” does not hold; cells 

are thought to face a trade-off that is described by the set of Pareto-optimal 

solutions. In a maximization multi-objective problem, a vector that is part of the 

feasible space is considered to be Pareto-optimal if all other vectors have the 

same or a lower value for at least one of the objective functions. Therefore, a 

Pareto-optimal solution is found when there exists no other feasible solution, 

which would decrease one objective without increasing another objective. The 

set of Pareto-optimal solutions constitutes the Pareto-optimal front [13]. In the 

absence of additional information, no one Pareto-optimal solution can be said to 

be better than the other; higher-level information is required to choose one of 

the solutions [14]. 

As proposed by Costanza et al. [15], to solve this multi-objective optimization 

problem one can use evolutionary algorithms |stochastic optimization methods 

that simulate the process of natural evolution. 

Evolutionary algorithms are well suited to multi-objective problems because they 

can generate multiple Pareto-optimal solutions after one run and can use 

recombination to make use of the similarities of solutions [14]. 

The input to the evolutionary algorithm is a set of arrays, also called individuals, 

representing potential solutions to the problem. These arrays are then ranked 

based on the values of their objective functions. 

Potential optimal solutions are generated by retaining the best individuals and 

by generating new individuals through the use of variation. This process is 

continued until no further improvements are detected on the Pareto front. 

By modelling the metabolism of bacterium as a multi-objective problem, we 

address a conflict problem whereby maximizing one objective (e.g., biomass) 

might involve a trade-off in the other objective (e.g., intracellular flux). We used 

a modified version of the evolutionary algorithm developed by Angione et al. in 
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[16]. The population size and the number of populations used with this algorithm 

were 70 and 210, respectively. 

We used iMLTC806cdf, an extensively curated reconstructed metabolic network 

of C. difficile strain 630. The metabolic network consists of 806 genes, 705 

metabolites, and 1092 reactions [7]. We investigated the effect of the choice of 

different objectives on model predictions. The first objective was always 

maximization of biomass production, because it was found to best predict 

metabolic fluxes. In this work, we used the IBM ILOG CPLEX CP Optimizer 

solvers [21]. 

 

2.3 Sensitivity Analysis  

Sensitivity Analysis is used to identify model inputs that have a large influence 

on the model outputs. To find the metabolic pathways (sets of reactions 

producing a particular product) that had the largest effect on the model outputs, 

we used PoSA [15]. The pathways, such as the Citric Acid Cycle and the 

Pentose Phosphate Pathway, perform certain metabolic tasks for the bacterium. 

This approach involves genetically manipulating the metabolic model to find the 

sensitive pathways, which make a large impact on model outputs. In other word, 

we perturbed pathways by mutating the genes that govern their biochemical 

reactions and analysed the result on the outputs. 

In the knockout vector y = {b1, b2, ,bs, bp}, bs represents the perturbations on the 

genes governing the metabolic pathway s, where |bs| = Ws (number of genes 

partaking in the sth pathway). Because the gene knockouts are represented 

through the use of binary variables, we perform combinatorial perturbations, 

namely the bits in bs are switched from 0 to 1 or from 1 to 0; if a gene in bs is 

set to 1, this gene is knocked-out in the model. According to [15], the Pathway 

Elementary Effect (PEE) for the genetic perturbation bs can be defined as 

follows:  

PEEs =F(b1, b2, …,bs
+, …,bp) -F(y+)/Δs     (6) 
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where bs
+ represents the genetic manipulation of the input bs; y+ is the mutation 

carried out on the knockout vector y; F(y) is the vector v of fluxes as produced 

by the model; finally, Δs is a scale and is defined as: 

Δs =W-1
s-Σj=1..Ws b+s(i); s = 1,.. p     (1) 

Next, the sensitivity indices μ and σ are determined by calculating the mean and 

the standard deviation of the distribution of the PEE for each input. Pathways 

with a large σ have a large influence on the output. A large σ indicates an input 

whose influence highly depends on the value of other inputs. By perturbing the 

genes through the use of knockouts and comparing the outputs of the model 

with and without the genetic manipulations, we detect the most sensitive 

pathways of the metabolic network. 

 

2.4 Robustness Analysis 

A facet of living organisms is their homeostasis, otherwise known as their ability 

to remain robust to external and internal perturbations within a certain range. 

External perturbations include changes in temperature or food supply while 

internal perturbations include spontaneous mutations. The robustness of 

biological systems is partly due to the presence of parallel metabolic pathways. 

Robustness represents the insensitivity of a system to changes in system 

parameters. 

Global Robustness (GR) analysis can be used to survey the parameter space to 

determine the region where the cell exhibits specific features. More specifically, 

we perturbed the flux bounds of the metabolic model and observed the resulting 

effects on the objectives: biomass and intracellular flux. We followed the 

analysis described in [19]. The Global Robustness was defined as the 

percentage of trials determined to be robust.  

We were also interested in the robustness of the network to a particular 

reaction. Therefore, robustness was defined as a measure of the change in the 

maximal flux of the objective function when the optimal flux through any of the 

reactions was altered [29]. The robustness of the biomass objective function 
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to availability of glucose and fumarate was determined. We also determined the 

robustness of the model to changes in the flux through essential reactions, such 

as the reaction catalyzed by Glutamate Dehydrogenase (GDH) and Ribose-5-

phosphate isomerase (Rpi). 

 

2.5 Modeling transcriptomics in genome-scale models 

To increase the reliability of the model, gene expression was added to the FBA 

framework, as shown in 1. The flux bounds of the model were continuous 

functions of the gene expression data available for a specific environmental 

condition. Through this methodology, a model is tailored for each environmental 

condition. Each of the reactions in the metabolic model depend on a gene set, 

which is represented through the use of AND/OR operators. In this formulation, 

if a gene set is composed of two genes and an AND operator, both genes are 

required to carry out the corresponding reaction. On the other hand, if two 
genes connected by OR, one gene is sufficient in carrying out the reaction. 

This formulation can be transformed to derive the gene set expression from the 

expression of individual genes. When two genes are connected through an AND 

operator, the gene set expression for reaction i, gi, is the minimum of the 

expression of the individual genes making up the gene set. The gene set 

expression for two genes connected by an OR operator is the sum of the 

expression of the individual genes. In an alternative methodology, proposed by 

[22], the gene set expression for two genes connected by an OR is the 

maximum of the expression of the individual genes. Following METRADE [22], 

gene set expression was then used to alter the bounds on vj. 

The logarithmic map between gene set expression and the flux bounds was 

chosen because at high mRNA abundance, an increase in mRNA abundance 

was found to produce a relatively small increase in the protein synthesis rate. 

On the other hand, at low mRNA abundance, an increase in mRNA abundance 

was found to produce a large increase in the protein synthesis rate [23]. 
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2.6 Integrating Codon Usage in the FBA Framework  

The translation rate of a codon is determined in part by the speed of diffusion of 

a translationally competent tRNA to the ribosome. Because tRNAs are 

differentially abundant in the cell, codons pairing to high-abundance tRNAs are 

translated faster than those pairing to low-abundance tRNAs. Although 

synonymous codons produce the same amino acid sequence, they can alter the 

translation speed and the protein expression levels depending on the 

abundance of their associated tRNA [24]. A study by Gygi et al. [25] revealed 

that a large codon bias generally resulted in higher protein expression levels. 

Therefore, the inclusion of codon bias can help improve the metabolic model 

predictions by helping link gene expression levels to protein levels. 

The codon usage table for C. difficile was obtained from the Kazusa Codon 

Usage Database, which lists the frequency of different codons in the C. difficile 

genome [26]. The weights for synonymous codons was determined as the ratio 

between the observed frequency of the codon k and the frequency of the 

most preferred synonymous codon for that amino acid. We obtained the mRNA 

sequence associated with the 806 genes of C. difficile from UniProt [27]. The 

counts of different codons were determined for each mRNA sequence. To 

obtain a measure of the codon bias, we calculated the relative Codon 

Adaptation Index (rCAI) for each gene. The rCAI represents the relative 

adaptiveness of the codon usage of the relevant gene to the codon usage of 

highly expressed genes [28]. The rCAI was calculated according to the 

following: 

 
where L is the number of codons in the genes and wk(l) is the weight associated 

with codon type k for lth codon along the length L of the gene. The value hi 

obtained after integrating gene expression (Eq. 9) was then scaled by rCAI to 

account for both gene expression and codon usage bias (equaz 12): 
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In each reaction of the model, the associated hj was finally adopted as a 

multiplicative factor for the flux bounds. The logarithmic map between gene set 

expression and the flux bounds was chosen because at high mRNA abundance, 

an increase in mRNA abundance was found to produce a relatively small 

increase in the protein synthesis rate. On the other hand, at low mRNA 

abundance, an increase in mRNA abundance was found to produce a large 

increase in the protein synthesis rate [21]. 

 

2.7 Analysis of cDNA Microarrays 

We used microarray analysis to determine the combination of genes which were 

up-regulated or down-regulated in different environmental conditions. 

We used Limma, a package in Bioconductor 3.1 software, because it allows for 

rigorous statistical analysis of gene expression [30]. We preprocessed the data 

through background correction, within-array normalization, and between-array 

normalization. After normalization, we used filtering to remove probes that did 

not appear to be expressed in any of the experimental conditions. Next, we 

used linear models to analyze the microarray data. To conduct statistical 

analysis and assess differential expression, we used an empirical Bayes 

method to modulate the standard errors of the log-fold changes. To test for the 

comparisons of interest, we used an analysis of variance (ANOVA) model. A 
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false discovery rate is the percentage of expressed genes that are actually non 

differentially expressed among those that are differentially expressed. We 

considered probes with false discovery rate less than 0.05 to 

be differentially expressed. 

 

2.8 Results and Discussion 

To construct our metabolic model, we investigated different multi-objective 

optimization scenarios to find the objectives that best constrained the feasible 

space. The metabolic model from the multi-objective optimization was then 

assessed using robustness and network sensitivity analyses. Comparison of 

model predictions to literature during these analyses was used to evaluate the 

model. To determine the behaviour of the bacterium in different environments, 

gene expression and codon usage data were integrated to create a multi-omic 

model for the bacterium. Due to the lack of experimental data on biomass 

composition and flux rates for C. difficile, the model can only be used to make 

predictions about qualitative changes in the organism's behavior in response to 

different environmental conditions. Furthermore, the lack of experiments that 

focus on the metabolism and growth rate of C. difficile makes it difficult for the 

model to yield reliable absolute growth rate predictions. For this reason, 

applications of this model are limited to areas such as studying the bacterium 

and designing novel drug targets rather than using the model to optimize 

production of a certain amount of metabolite. 

 

3 Secondary Objective Analysis  

In the first experiment, we built a model maximizing biomass while minimizing 

total intracellular flux. The Pareto front, shown in red in Figure 2a, signifies a 

trade-off between the two objectives. The Pareto front in both cases is obtained 

through METRADE [22] by manipulating the gene expression of the bacterium 

to achieve a range of trade-offs between the two objectives. Biological systems 
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that perform multiple tasks face an optimality trade-off. A given phenotype 

cannot be optimal for all environmental conditions and the Pareto front indicates 

the range of possible phenotypes resulting from these trade-offs [39]. 

In the second experiment, we built a model which maximizes biomass and 

succinate production. C. difficile uses the succinate spike in the microbiota, 

which follows antibiotic-treatments, to expand in the intestine. Organic acids, 

such as succinate, are common end products of fermentation by the 

microbiota and are metabolized by C. difficile during its colonization. C. difficile 

couples reduction of succinate to butyrate with fermentation of dietary 

carbohydrates [20]. For this reason, an increase in succinate availability would 

be expected to result in an increase in growth (biomass production). The results 

of the second experiment are shown in Figure 2. In this case, no clear Pareto 

front was observed; the red points don't constitute a Pareto front as they are not 

strictly dominated by any other point. The dominated solution was obtained due 

to the flux bound for succinate production, 10 mmol/gDWh. The first model, 

maximizing biomass and minimizing total intracellular flux, was used in 

subsequent analyses due to the presence of a trade-off, which was thought to 

better constrain the feasible space. Due to the absence of experimentally-

derived metabolic fluxes, validation of the model involved comparing model 

predictions to biological rationale, findings on various facets of the C. difficile's 

metabolism. 

 

3.1 Robustness Analysis 

In our analysis, we determined robustness of the network and of the model with 

regards to metabolite activity and essential reactions. 

3.1.1 Global Robustness  

To gauge the robustness of the network, we determined the change in the 

maximal biomass flux in response to external perturbations. Global Robustness 

(GR) analysis revealed that the biomass production was fully robust to 
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perturbations in the flux bounds. This facet of the bacterium's metabolism was 

biologically relevant as bacteria, such as C. difficile are able to grow despite 

small fluctuations in their physical environment. The intracellular flux was 65.8% 

robust for a tolerance (ε) and flux bound perturbation (σ) of 1%. 

The GR for intracellular flux is shown in Figure 3 for different values of  and . 

The GR falls when σ is increased or ε is decreased. The model appears to 

more sensitive to the than to the level of perturbations incurred. For an ε of 1%, 

the GR falls sharply as σ increases from 5% of flux bounds. 

Metabolite Availability and Essential Reactions For C. difficile, biomass 

production was expected to increase before leveling off for increased availability 

of carbon substrates, such as glucose and fructose. Robustness analysis 

showed an increase in biomass production through increased availability of 

glucose (Figure 4). Further robustness analysis revealed that the model did not 

agree with experimental findings for some reactions in the bacterium's 

metabolisms. For example, one essential reaction for C. difficile is the 

conversion of -ketoglutarate to glutamate by GDH, which is the sole means of 

incorporating inorganic nitrogen into carbon backbones for the bacteria [32]. 

Glutamate Dehydrogenase (GLDH) was experimentally found to be important 

for growth of C. difficile [34]. However, increasing the metabolic flux through the 

corresponding reaction actually decreased biomass production, as shown in 

Figure 4. Furthermore, using the model in a gene deletion case study 

revealed that knockout of the gene gluD responsible for producing GDH, did not 

affect model predictions of maximal biomass production. These results 

contradict a study by Girinathan et al. which found that the gluD mutants grew 

slower than the parent strain and that complementation of the gluD mutant 

with the fuctional gluD gene reveresed the growth defect [34]. 

A different trend was observed for the robustness analysis of the reaction 

catalyzed by D-proline racemase (PrdF). The Stickland pathway is thought to 

serve as a primary source of energy in C. difficile. One reaction in this pathway 

is the racemization of L-proline to D-proline, which is the substrate of D-proline 
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reductase in the Stickland pathway. This racemization is conducted by PrdF. 

Experimental findings show that PrdF is partially involved in mediating optimal 

growth of C.difficile Wu2014. These experimental findings vary starkly with 

model findings that show a decrease in growth with increasing flux in proline 

racemase as shown in Figure 4. 

 

3.2 Sensitivity Analysis 

Sensitivity analysis in genome-scale models has been proposed to assess the 

key component in the metabolic network. Using PoSA [15], we compute 

sensitivity indices in a pathway-based fashion. Each pathway is assessed 

through random perturbations of its reactions, and the average perturbation and 

the standard deviation are computed as a result. 

We performed the pathway-based sensitivity analysis and identified eleven 

sensitive pathways in the metabolic model as shown in Figure 5. The pathway 

with the largest σ is the valine, leucine, and isoleucine metabolism pathway. As 

shown in Table 1, these three amino acids are essential to the bacterium and 

their metabolism pathway was also expected to be essential. On the other 

hand, pathways, such as the alanine, aspartate, and glutamate metabolism 

pathway, were not determined to be sensitive. 

Model findings match our expectations that the growth of the bacterium will not 

be as sensitive to metabolism of the nonessential amino acids, such as alanine, 

aspartate, and glutamate. The model found the ubiquinone and other terpenoid-

quinone biosynthesis to be a sensitive pathway for C. difficile. Terpenoid 

biosynthesis has been found to be essential for survival of bacteria. Currently, 

drugs against various bacterial pathogens target enzymes in this pathway [35]. 

Another pathway determined by literature to be important to C. difficile is the 

Stickland pathway. Stickland reactions couple oxidation and reduction of amino 

acid pairs and have been found to be important for the growth of C. difficile as 

they contribute to generation of ATP and reducing power [36]. 
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The sensitivity and robustness analysis of the model revealed that overall, 

despite some limitations, the network could be used to make meaningful 

predictions about the behavior of the bacterium. Therefore, we decided to 

investigate whether the model could reliably predict C. difficile behavior in 

different environments. 

 

3.3 Essential Amino Acids 

We compared model predictions to existing experimental findings on the 

response of C. difficile to the absence of various amino acids. The results are 

shown in Table 1. The bacterial essential amino acids were found to be 

essential by the model as their removal prevented the production of biomass. 

The removal of amino acids that were not found to be essential or to affect 

growth, did not visibly affect model-predicted biomass values. However, the 

removal of growth-enhancing amino acids did not affect growth predictions. 

Therefore, while the model is consistent with experimental data regarding the 

amino acids that are essential or non-essential to C. difficile for survival, it does 

not capture the effect of growth-enhancing amino acids. 

 

3.4 C. difficile Growth Under Different Conditions 

We collected transcriptomic profiles from [3], E-GEOD-22423, Janoir2013 E-

GEOD-37442, Fimlaid2013Ferreyra2014a Context-specific models for C. 

difficile were generated by incorporating gene expression data obtained for the 

bacterium in different environmental conditions. To improve the reliability of the 

model, we also integrated codon usage data (See Materials and Methods for 

details). The biomass production after accounting for the bacterium's codon 

usage varied slightly for some environmental conditions. 

Model predictions of these context-specific models were compared to 

expectations of the organism's behavior in these environmental conditions to 

further validate the model. C. difficile is an obligate anaerobe so it is sensitive to 

presence of oxygen in the atmosphere. This experimental finding is also 
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achieved by the model, which predicted a drastic decline in growth rate in 

aerobic conditions. However, the bacteria is able to survive in atmospherically 

exposed (aerobic) cultures, suggesting that the bacteria has some mechanisms 

for tolerating limited oxidizing conditions [41]. The effect of acid shock on C. 

difficile is particularly relevant in a clinical setting as proton pump inhibitors 

(PPI) have been identified as a risk factor for C. difficile associated disease 

because they elevate pH to greater than 5. Gastric acid (pH 1.5-3.5) has been 

shown to kill vegetative C. difficile but the bacterium could contribute to disease 

pathogenesis if it is able to survive in gastric contents after use of PPIs 

Jump2007 The model predicts that the bacterium can tolerate these elevated 

pHs, with growth rate at a low around pH 8.5. Model findings agree with 

experimental findings that show C. difficile can withstand pH shocks between 

4.8 and 8.3 [3]. A study further determined that bacterial growth was 

inhibited when the pH was decreased to 4.8 [42]. The model predicts a low 

biomass production when the pH is decreased to 4.5. This findings are also 

replicated in clinical settings as (http://sma.org/southernmedical- 

journal/article/does-alkaline-colonic-ph-predispose-to-clostridium-difficile-

infection/) found a strong association between C. difficile infection and alkaline 

stool pH, suggesting that alkaline colonic pH predisposes patients to CDI. 

We incorporated gene expression data of C. difficile, which was inoculated into 

Brain-Heart Infusion (BHI) medium containing sublethal concentrations of 

antibiotics, into our model. Our model predicted a decrease in bacterial growth 

(1.26-1.27 h-1), relative to the BHI medium (1.29 h-1). This prediction is 

supported by [44], which determined that sub-lethal concentrations of these 

antibiotics will delay C. difficile's growth. 

To further illustrate the applicability of these multi-omic models in clinical 

settings, we decided to conduct a case study. Using the transcriptional 

response elicited by C. difficile in presence and absence of B. thetaiotaomicron 

in vivo for polysaccharide-deficient dietary conditions. Bt produces high levels of 

succinate during fermentation of dietary carbohydrates and C. difficile couples 
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reduction of this succinate to butyrate with fermentation of dietary 

carbohydrates. The results of Ng et al. support this hypothesis as shown in 

Figure 6. After constructing a multi-omic model for the bacterium C. difficile in 

the presence and absence of Bt, we found that the growth rate was higher in the 

presence of Bt, agreeing with the experimental findings of Ng2013. 

 

3.5 Conclusions and Future Work 

In this study, we created the first multi-omic model of metabolism for the 

organism C. difficile. The global robustness of the model was found to be 100% 

and 65.8% in predicting biomass production and the intracellular flux, 

respectively. A sensitivity analysis identified eleven sensitive pathways for the 

metabolic model, which largely matched expectations from literature. During 

validation of the model, the model was found to successfully predict essential 

amino acids. 

To predict the bacterium's behavior in different environmental conditions, the 

model was integrated with transcriptomic and codon usage data to generate 

reliable and context-specific metabolic flux distributions. We assessed the 

predictive potential of the model by comparing model prediction with 

published experimental data, therefore highlighting strong and weak points of 

the current knowledge of C. difficile metabolism. The comparison of model 

predictions to literature on C. difficile revealed that the model is very useful but 

neglects some intricate details of the bacterial metabolism. In these specific 

cases, to make the model more representative of the bacterium, the metabolic 

network must be refined by adding more reactions. 

Gene expression data in combination with our multi-omic model could provide 

translational medicine information and predictions of bacterial lifestyle. The 

multi-omic model provides effective comparison between different medical-

related conditions (for example pre-infection, post infection) and could be 

further refined by adding other intermediate conditions. Our multi-omic model 

can be used by biomedical researchers to study the bacterium and devise 
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targeted treatments. It can also be used to simulate the interactions between 

the human gut microbiota and the host. By accounting for the gut microbiota-

host interactions, we can construct a whole gut model response to infections 

and other inflammatory events, paving the path towards more informed and 

effective treatments.Interestingly, the comparison of the gene expression data 

through a multi omic model allows to identify the trajectories of key gene 

activations. A selection of these trajectories could be used as prognosis 

biomarkers and as biomarkers of drug actions. For instance, we report that 

common drug targets/treatments for C. difficile target metabolites that within 

what we in silico detect as ``sensitive'' pathways. 

 
 
Fig. 1: Three experiments showing the effect of the second objective on model 

predictions. Gray points represent the solutions obtained by the parallel genetic 

algorithm at different time steps. The Pareto front and the Pareto-optimal points 

are shown in red. (Upper) Maximizing biomass while minimizing total 

intracellular flux. (Below) Maximizing biomass while minimizing redox potential. 
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Legend: see figure 1 (top). 
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Fig. 2: GR of the second objective, the intracellular flux, for different fluctuations 

in the bacterium's environment and thereby of the flux bounds. Each fluctuations 

is represented by a different value of ε and σ 

 
 



   
           
 
 
 

FP7- 600803    [D6.1 - v1.6]    Page 26 of 34 

 
 

 



   
           
 
 
 

FP7- 600803    [D6.1 - v1.6]    Page 27 of 34 

 
 

Fig. 3: Biomass production as influx of glucose was altered from 0 mmol/gDWh 

to 10 mmol/gDWh.

 
 
Fig. 4: The mean (μ) and standard deviation (σ) of the PEEs from the pathway-

based sensitivity analysis of the C. difficile metabolic model. The output of this 

analysis indicates the metabolic pathways that have the greatest impact on the 

model outputs. 
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Table 1: Biomass production (growth) under different conditions. Biomass fluxes 

normalized by the biomass flux in control condition. Unless stated otherwise, 

the bacteria were grown at 37 C, anaerobic conditions, and pH 7. GE stands for 

gene expression data and CU stands for codon usage data. 

 

While the antibiotics used in table 1 will control the biomass of the bacteria, it is 

known that beneficial bacteria will produce gamma amino-butirrate that have a 

positive influence on T lymphocytes. Pathogens will put generate inflammatory 

and immune system response. Our recent results and ongoing research  show 

that multi omic metabolic  approaches are effective in estimating the amount of 

disruption caused by the gut infection. Parameters estimated in the models we 

have developed could be implemented into the models of inflammation. Next we 

use machine learning methods to investigate the  pathways involved in 

inflammatory and autoimmune diseases. 

4 Machine learning of inflammatory diseases (sterile and 
infective) 

The interaction of T2D diabetes with autoimmune diseases has been 

investigated using the adaptive landscape model from Waddington. Here we 

modeled the adaptive landscape using a Ornstein Uhlenbeck approach. Here 
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we have focused on Allergy (CD4+ T cell), Asthma (Airway epithelial cell), 

Ulcerative Colitis (PBMC), Crohns' Disease (PBMC), Rheumatoid Arthritis 

(PBMC), Chronic Fatigue Syndrome (PBMC), Systemic Lupus Erythematosus 

(CD14+), Type 2 Diabetes (Pancreatic islets). 

 
 

Figure 5. In the health condition the gene regulatory level can be represented as 

a ball at the bottom of a valley — stochastic noise allows it to vary slightly, but 

regulatory forces represented by the walls of the valley keep the levels clustered 

around a single point.  
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Figure 6. An early disease condition flattens the landscape, leading to more 

variable regulatory levels and breaking the delicate balance of regulation that 

maintained the stable gene expression and epigenetic signature in the face of 

noise. 

 

The Ornstein Uhlenbeck could be described as: 

 

  

 
The mean and variance relationships could be described as follows: 
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Figure 7 shows the relationship between candidate biomarker genes and 

autoimmune and T2D diabetes : Allergy (CD4+ T cell), Asthma (Airway 

epithelial cell), Ulcerative Colitis (PBMC), Crohns' Disease (PBMC), 

Rheumatoid Arthritis (PBMC), Chronic Fatigue Syndrome (PBMC), Systemic 

Lupus Erythematosus (CD14+), Type 2 Diabetes (Pancreatic islets). Publication 

submitted to Frontiers in Physiology. We have used the p value statistics to 

derive a model of the antagonist approach of proinflammatory and anti 

inflammatory cytokines. This model , through the AKT/mTOR pathway generate 

describe the comorbidity of diabetes and arthritis. 
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