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Executive Summary 
 

In this deliverable we describe the work done in task 3.3. 
We have approaches the task of “Partially observed Markov 
process models of inflammation and nutritional and lifestyle 
aspect that have impact on T2D and inflammation” by 
implementing a Baum-Welch Hidden Markov models 
procedure for estimating diabetes and inflammatory 
diseases. Then we analysed diabetes in different age 
related datasets to identify age specific genes which are 
perturbed. We have developed a software that combines 
clinical, molecular, lifestyle data and gene ontology to make 
inference  and visualise a morbidity profile. 
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1 Introduction 

Exploring associations among diabetes, obesity and inflammatory diseases at the 

molecular and clinical levels could greatly facilitate our understanding of pathogenesis, 

and eventually lead to better diagnosis and treatment. Combination of multiple types of 

omics, phenotype and ontology data identifies integrative biomarkers for the 

stratification of patients with clinical outcome. Beyond, behavioural and environmental 

aspects should also be considered in order to understand disease-disease 

associations. Recent research has increasingly demonstrated that many seemingly 

dissimilar diseases have common molecular mechanisms and strong associations. A 

comorbidity relationship exists between diseases whenever they affect the same 

individual substantially more than expected by chance. It represents the co-occurrence 

of diseases or presence of different illness or medical conditions simultaneously or one 

after another in the same patient. Comorbidity associations can be due to direct or 

indirect causal relationships and the shared risk factors among them. If two diseases 

have associated comorbidity, the occurrence of one of them in a patient may increase 

the likelihood of developing the other disease. Certain diseases, such as diabetes and 

obesity often co-occur in the same individual, sometimes one being considered a 

significant risk factor for the other. Comorbidity is an important factor for better risk 

stratification of patients and treatment planning. Diseases with similar genetic, 

environmental, and lifestyle risk factors may be co-morbid in patients or may be risk 

factors for additional conditions. Shared risk and environmental factors have similar 

consequences, prompting the co-occurrence of related diseases in the same patient. 

For an instance, many well-known and influential environmental factors such as 

smoking, diet, and alcohol intake are strongly associated with diabetes type 1 and type 

2, and obesity. Also, many serious chronic diseases, such as cancer and diabetes, are 

complex diseases influenced by a combination of environment and epistasis between 

many genes. Therefore, a patient diagnosed for a combination of diseases and 

exposed to specific environmental, lifestyle and genetic risk factors may be at a 

considerable risk of developing several other genetically and environmentally related 

diseases. It is now well accepted that phenotypes are determined by genetic material 

under environmental influences. Recently, genome-wide association studies (gwas) 

have proved useful as a method for exploring phenotypic associations with diseases. 

Single-nucleotide polymorphisms (SNPs), a variation of a single nucleotide, are 
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assumed to play a major role in causing phenotypic differences between individuals. It 

has become possible to assess systematically the contribution of common SNPs to 

complex disease. In copy number variations (CNVs) longer stretches of DNA can get 

lost, duplicated, or rearranged in the genome of an individual that cause various 

phenotypic abnormalities. CNVs are significantly associated with the risk of complex 

human diseases including inflammatory autoimmune disorders, diabetes etc. The 

development of type 2 diabetes has also been known to be influenced by genetic and 

environmental factors. In this way, diseases may share many distinct types of 

relationships with varying levels of risk for disease comorbidity. Thus, a singular view of 

dependencies among diseases is not sufficient. As more and more ontology, 

phenotype, omics and environmental data sets become publicly available, it is 

beneficial to improve our understanding of human diseases and diseases comorbidities 

based on these new system-level biological data. The integration analysis of various 

'omic' data has become increasingly widespread. Some studies have indicated that 

these limitations can be mitigated by integrating two or more omic datasets but a 

comprehensive understanding requires to inspect multiple sources of evidence. We 

developed a software for disease comorbidity risk assessment based on the gene-

disease association, pathway disease association, DO (disease ontology) and clinical 

information that uses gene expression, miRNA-based relationships, shared 

environmental factors, ontology, SNPs, CNVs and phenotypic manifestations. Now we 

propose a computational framework that integrates more heterogeneous and important 

data including miRNA-target interactions, miRNA disease association, phenotype 

similarities of diseases, GO (gene ontology), SNPs, CNVs and known disease-

environmental associations to capture the complex relationships between phenotypes, 

genotypes and clinical comordibidity.  

In the next section we describe the main examples and the methodologies we have 

developed:  

 

2 Methods 

 
 
Diseases are connected when they share at least one significant dysregulated 

gene/miRNA/SNP/CNV/ GO/phenotype or environmental factor. Let a particular set of 
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human diseases D and a set of human genes G, gene-disease associations attempt to 

find whether gene g ε G is associated with disease d ε D. 

If Gi and Gj are the sets of significant up and down dysregulated genes associated with 

diseases i and j respectively then the number of shared dysregulated genes (ng
ij) 

associated with both diseases i and j is as follows: 
 

 
 
We calculated the similarity between a pair of diseases, indicating how many entities 

(gene, SNP, CNV, miRNA, HPO or environmental factor) are shared. For example, for 

generating gene-sharing, we generated a list of genes known to be associated with 

each disease, and the disease similarity (correlation) was calculated based on how 

many genes are shared between a pair of diseases. The similarity is defined as 

 

 
where N(Gi) and N(Gj) are the number of genes linked to disease i and j respectively, 

and N(Gi \Gj) is the number of genes associated to both disease i and disease j. SNP-

sharing, CNV-sharing, miRNA sharing, HPO-sharing and environmental factor were 

also generated with the same approach used for gene-sharing. Hypergeometric test is 

implemented for enrichment analysis. It is used to assess whether the number of 

selected genes or ontology associated with disease is larger than expected. To 

determine whether any disease annotate a specified list of genes at frequency greater 

than that would be expected by chance, we calculate a p-value using the 

hypergeometric distribution. Significance of the enrichment analysis is assessed by the 

hypergeometric test and the p value is adjusted by false discovery rate (FDR). Then 

the p-value is calculated using the following formula: 
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where N is the total number of reference genes, M is the number of genes that are 

associated to the disease of interest, n is the size of the list of genes of interest and k is 

the number of genes within that list which are associated to the disease. In case of GO 

term the p-value reports the likelihood of finding n genes annotated with a particular 

GO term in the set of interest by chance alone, given the number of genes annotated 

with that GO terms in the reference set. A biological process, molecular function or 

cellular location (represented by a GO term) is called enriched if the p-value is less 

than 0.05. The co-occurrence refers to the number of shared 

miRNAs/genes/ontology/SNPs/CNVs between two diseases. Each common neighbour 

is calculated based on the Jaccard Index method to measure the strength of co-

occurrence, where association score for a node pair is as: 

 

 
 

A third variation which usually improves performance significantly is the Adamic and 

Adar measure [Adamic and Adar, 2003], which weights the impact of neighbour 

disease nodes inversely with respect to their total number of connections as follows: 

 
 

This inverse frequency approach is based on the principle that rare relationships are 

more specific and have more impact on the disease similarity. 

Finally we calculate the disease-disease interaction score. The score indicates the 

strength of the interaction between the diseases based on the protein interaction. The 

interaction score (ϕ ij) is assigned for each disease pair i and j as follows: 

 

 
 



   
           
 
 
 

FP7- 600803    [D3.4 - v1.2]    Page 8 of 23 

  
 

Here, NGi and NGj are the total number of genes for the disease, i and j, respectively; 

ng ij is the total number of common genes between the two diseases. N is the size of 

entire proteins involved in the disease protein network. Z is a constant (Z = 1) 

introduced to avoid out-of bound errors, if NGi = NGj = ng ij = 0. The expected result of 

ϕij is positive, when the disease pair is over-represented and negative, when the 

disease pair is under-represented. Co-occurrence refers to the number of shared 

patients. This weighting scheme is used to avoid bias based on disease prevalence. 

The mutual information weight W(di, dj) between two diseases di and dj is defined as 

 
where the numerator is the observed co-occurrence (joint probability) and the 

denominator is the random expectation of co-occurrence (product of marginal 

probabilities). The use of semantic similarity between biological processes to estimate 

disease similarity could enhance the identification and characterization of disease 

similarity besides identifying novel biological processes involved in the diseases. 

Graph-based methods using the topology of GO graph structure are used to compute 

semantic similarity. Semantic values of GO term are calculated based on the DAG of 

corresponding diseases. Semantic similarity for any pair of GO term is calculated 

based on disease semantic value. 

Formally, a GO term a can be represented as a graph DAGa = (a; Ta;Ea), where Ta is 

the set of all GO terms in DAGa, including term a itself and all of its ancestor terms in 

the GO graph, and Ea is the set of corresponding edges that connect the GO terms in 

DAGa. To encode the semantic of a GO term in a measurable format to enable a 

quantitative comparison, Wang firstly defined the semantic value of term a as the 

aggregate contribution of all terms in DAGa to the semantics of term a [Wang et al, 

2010]. Terms closer to term a in DAGa contribute more to its semantics. Thus, the 

contribution of a GO term t in DAGa is defined to the semantics of GO term a as the S 

value of the term t related to term a, Sa(t), which can be calculated as: 
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where we is the semantic contribution factor for edge e (e 2 Ea) linking term t with its 

child term t 0. It is assigned between 0 and 1 according to the types of associations. 

Term a contributes to its own is defined as one. Then the semantic value of GO term a, 

SV (a) and the semantic value of GO term b, SV (b) are calculated as: 

 
 

Thus for the given two GO terms a and b, the semantic similarity between these two 

terms is defined as: 

 
 

To gain more insight into the shared molecular mechanism of associated human 

genetic diseases, mapping was implemented from disease phenotype to gene based 

on the disease-gene association. With the accumulation of large amounts and multiple 

types of experimental data, prediction of gene-phenotype associations has emerged as 

a very productive subfield with great importance for the understanding of human 

disease. Given a particular set of human phenotypes (typically diseases) D, a set of 

human genes G and evidence E, these methods attempt to find whether gene g ε G is 

associated with phenotype d ε D. Note that evidence E can be gene-disease 

associations obtained through genetic studies. To quantitatively describe the 

phenotypic similarity between different phenotype record Pi and Pj , according to 

[Zhang et al, 2010] we defined the similarity measure as cosine of the angle between 

their corresponding phenotype feature vectors using the following formula: 
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where N is the total mapping concepts, wk,i and wk,j were the k-th term, weight in 

phenotype record Pi and Pj , respectively. 

For each of the phenotype clusters, mapping was implemented from disease 

phenotypes to their associated disease genes based on the disease-gene association 

list in the OMIM database. Thus, we can get the corresponding gene subsets mapped 

to different phenotype clusters. Each OMIM phenotype was mapped to the hierarchy of 

HPO to retrieve the matched HPO terms. Then, a new HPO similarity is calculated for 

each pair of phenotypes by Jaccard similarity coefficient 

 
 

where P1 and P2 are the set of the matched HPO terms of the two phenotypes, 

respectively. The way to assign terms to objects is to add annotations. In our case, the 

objects represent genes and terms corresponding to phenotypes (HPO terms) or 

biological processes (GO terms). The specificity of the terms associated with genes 

allows us to calculate the most significant relationships between them, which use to be 

related to its proximity to the root. 

Individual diseases are usually annotated to multiple phenotypic features. In order to 

calculate the similarity between two diseases, d1 and d2, we adapt a method 

previously developed for estimating protein similarity with GO [Pesquita et al, 2008], 

whereby each feature of d1 is matched with the most similar feature of d2 and the 

average is taken over all such pairs of features: 

 
Equation above is not symmetric with respect to d1 and d2, the final similarity metric is 

defined as the mean of this Equation taken in both orientations: 

 
This metric is used to define the similarity between two diseases.  
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3 Partially observed Markov process approach 

We considered two layers of information:  disease 1 (say diabetes) and disease 2 (say 

inflammatory disease).  They can be both modelled as hidden Markov models. We 

generally assume to have data of several patients to determine the transition 

probabilities. Each (HMM) layer represents one disease. We consider one disease 

driving the other, at least partially. Each node, represents one state of the system 

under consideration. Statistics from different omics is used. This is only sensible if the 

different parts under consideration are distinct for each driver/driven sequence of 

chains. Thought on driver/driven sequence: given a network of "model diabetes 

inflammation", find augmenting paths. They give nice sequences of driver/driven 

nodes. The notation used is the following: 
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For the driving Chain this is the usual Baum-Welch algorithm, as the driving chain is 

just a traditional HMM. Its derivation is given for completeness and comparison to the 

adopted version. 
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For the driven Chain the main difference know is, that for to find P(Yt+1 = i|Yt = j) one 

needs to condition on Xt+1. This why, for the steps from now on, we need to condition 

now on all observations O! 
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This formulas above are coded and implemented together with the gene ontology and 

the integration of clinical and molecular data (see examples at pages 21-23). 

 

The figure below shows the Flow diagram of the pipeline. A: we take as input 

preliminary diagnosis data of a patient and check the validation of the input. B: It 

performs the annotation and enrichment analysis. C: It preprocesses and updates 

required databases, performs statistical computation (hypergeometric and semantic 

similarity tests), and calculates relative risk between diseases. D: Comorbidity scores 

and disease network are provided as a result to the user. E: Visualisation of the 

comorbidity map and survival probability of patient considering comorbidity. Symbols D, 

E are used to indicate disease and environment respectively. 
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Figure 3.1 Schema of the pipeline. 

 

4 Understanding the impact of lifestyle and behavior 

The Gene Ontology (GO) is extremely useful for the exploratory analysis of microarray 

and other forms of high-throughput data [Ashburner et al, 2000]. GO is developed by 

the Gene Ontology Consortium (http://www.geneontology.org/) to describe gene 

products using controlled and structured vocabulary and is divided into three 

categories: biological process, molecular function and cellular component. The GO 

represents concepts, attributes, and relationships in the form of a directed acyclic 

graph, and each term has defined relationships to one or more other terms in the same 

domain. It gives the function of genes and the location of corresponding proteins. The 

functional similarity of GO terms is the basis for evaluating the possibility for a gene to 

be the causative gene of a disease. So, GO enable us to analyse disease association 

by adopting semantic similarity measures to expand our understanding of the 

relationships between different diseases. We have developed a function 

comorbidityGO for the computation of GO based disease comorbidity in an ontology 

sense. It is a GO-based enrichment analysis function to measure association among 

diseases and to explore their functional associations from gene sets. Statistical 

analysis is conducted to identify significant GO terms and to construct the functional 

profile of the disease gene set. Graph-based methods based on the [Wang et al, 2007] 

are implemented in the pipeline. We implemented a semantic similarity measurement 

to quantify the association between gene ontology and their associated diseases. The 

semantics of GO terms are encoded into a numeric format and the different semantic 
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contributions of the distinct relations are considered. Moreover, hypergeometric test is 

applied to a gene set to calculate the significance of a GO term, and the significant GO 

term sets are selected according to their p-values. Gene set enrichment analysis are 

used for predicting the significance of gene{disease and disease{disease associations. 

comorbidityGO function operates by using either of the following input: GO id, disease 

OMIM id, a list of gene symbols, Entrez gene ids or ICD-9 code of the patient disease. 

This function provides disease comorbidity associations and network based on the GO. 

comorbidityGO requires two parameters: id list and id type.  

Type II Diabetes dataset called Expression data from human pancreatic islets, 

accession number GSE38642. This dataset was produced using GeneChip R  Human 

Gene 1.0 ST arrays and contains information about 63 individuals, 54 of which are 

controls (non- diabetic). The dataset is relatively gender equalised (23 control females 

and 31 control males) with age range from 26 to 75 years. The fifty-four samples were 

divided into following groups: 

 

 

Table 4.1 

All the sample group combinations were analysed using Limma, leading to the 

following results (using the same Type I error threshold of  

 = 0:05): 
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Table 4.2 

Similarly to the previous dataset, the differential gene expression analysis has detected 

no differentially expressed genes in relation to the age groups, while controlling for 

gender. Nevertheless, 56 genes were found to have differential expression in relation 

to the gender of the individual, while controlling for age group. 

The three sets of differentially expressed genes were submitted to the GOrilla for GO 

Term Enrichment analysis. GOrilla was set to use the Two unranked lists of genes 

option, where the target set submitted was the list of differentially expressed genes 

found, while the background set was a list of all the genes present in the arrays. The 

minimal p-value was left at default value 10-3, revealing following results: 

 

Table 4.3 Gender Differential Expression for Ages 26 to 45; The following GO terms 

were enriched 

All four of these terms are part of the cellular catalytic activity and seem connected to 

the histone modification process. The likely explanation for seeing these GO Terms 

enriched in comparison between the two genders is that X chromosome inactivation in 

females is causing differential gene expression. 
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Table 4.4 Gender Differential Expression for Ages 46 to 60; The following genes were 

enriched in GO terms for cellular processes: 

 

 

Table 4.5: Enriched GO Terms for Cellular Function in Ages 46 to 60 

 

 

Table 4.6: Enriched GO Terms for Cellular Component in Ages 46 to 60 
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Table 4.7: Enriched GO Terms for Cellular Component in Ages 61 to 75 

The network of Cellular Function GO terms for the enriched GO terms is shown in the 

Tables. The GO terms enriched for this age group are almost identical to those GO 

terms enriched for the other age groups and therefore it seems logical to assume that 

the same explanation that was suggested for the previous age groups would be valid 

for this age group as well (specifically, that the reason for differential expression 

between the males and females is caused by sex-specific genes, such as X 

chromosome inactivation genes).  Type II Diabetes dataset in the dataset there were 

no differentially expressed genes detected by the GEO2R tool in terms of age. For the 

differentially expressed genes in respect to the gender, the GO Term Enrichment 

analysis has shown that most of these genes are either sex-linked (i.e. located on Y 

chromosome), or related to histone modifications (especially de-methylation) - from this 

it was suggested that X chromosome inactivation in females may account for some of 

the differentially expressed genes observed. Similarly to the first dataset, also for this 

dataset it is concluded that no comorbidity was detected in the control samples which 

would relate to Type II diabetes.  

Then we have used gene expression data for inflammatory comorbidities and for 

behavioural data. This below shows the type of comorbidity output  

 



   
           
 
 
 

FP7- 600803    [D3.4 - v1.2]    Page 20 of 23 

 
 

Table 4.8 Comorbidity information extraction using ICD9 database.  

 

Figure 4.1 Example of the output figure comorbidityMap("042" , "ICD9") which then is 

used as input to the comorbidityPatients. 

 

 

Figure 4.2 Here diseases are plotted in grey with their size proportional to the similarity 

to the differential expression. The arrow points to T2D patient group. Environmental 
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factors are plotted in blue with their size proportional to the number of diseases they 

are associated with. Edges between diseases indicate association of at least three 

identical genes while edges from environmental factors reflect direct association with 

the connected disease. Both types of edges are based on whether the genes or 

environmental factors have been mentioned together with the diseases in scientific 

journals. 

 

 

Figure 4.3 Nicotin abuse network. Color and size representation of the nodes and 

edges follow the same pattern as in the previous figure. 
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Figure 4.4 Comorbidity profile for diabetes and several inflammatory comorbidities and 

lifestyle conditions. 

 

5 Conclusion 

 

A pipeline for integrating multi omics, clinical and lifestyle information on diabetes and 
inflammatory disease is presented. This pipeline is based on different methodologies 
which use of hidden Markov models (Baum Welch) and gene ontology approaches. 
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