
FP7- 600803    [D3.2 – v1.2]    Page 1 of 24 

 
 

 

 

 

Multiscale Immune System SImulator for the Onset of Type 2 Diabetes 
integrating genetic, metabolic and nutritional data 

 
 
 
 
 
 
 
 
 
 
    

 

Work Package 3 

Deliverable 3.2 

 

 

Applying the approach to patient network at molecular 
and whole body 

  



   
           
 
 
 

FP7- 600803    [D3.2 - v1.2]    Page 2 of 24 

  
 

Document Information 
 
 
Grant Agreement  Nº 600803 Acronym MISSION-T2D 

Full Title Multiscale Immune System SImulator for the Onset of Type 2 
Diabetes integrating genetic, metabolic and nutritional data 

Project URL http://www.mission-t2d.eu 

EU Project Officer Name Dr. Adina Ratoi 

 
 

Deliverable No 3.2 Title Analysis of gene copy number, SNPs and 
other omics  

Work package No 3 Title   

 
 
Date of delivery Contractual 30.08.2014 Actual 02.09.2014 
Status Version 1.2 Final 1.2 
Nature Prototype                    Report   X Dissemination  Other  
 

Dissemination level 
Consortium+EU  
Public X 

 
Target Group                    (If Public) Society (in general)  
Specialized research communities X Health care enterprises  
Health care professionals  Citizens and Public Authorities  
 
 

Responsible 
Author 

Name Pietro Lio Partner  UniCAM 

Email pl219@cam.ac.uk 
 

Version Log 

Issue Date Version Author (Name) Partner 

20.08.2014 1.0 Pietro Lió UniCAM 

25.08.2014 1.1 Filippo Castiglione, Paolo Tieri CNR 

02.09.2014 1.2 Pietro Liò UniCAM 
 



   
           
 
 
 

FP7- 600803    [D3.2 - v1.2]    Page 3 of 24 

  
 

 
 

Executive Summary 
 

The analysis and the integration of omics data (gene 
copy number, SNPs, gene expression, pathways, 
methylation) related to diabetes and inflammatory 
diseases has required building a pipeline of novel 
programs and develop new algorithms that exploit the 
gene family structure of identified over expressed 
genes. Particularly relevant are the comparative omic 
analysis for the chemokine receptors and ligands. Two 
papers are in completion.  
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1 Introduction 

Diseases with similar genetic, environmental, and lifestyle risk factors may be co-

morbid in patients or may be risk factors for additional conditions [6]. Shared risk and 

environmental factors have similar consequences, prompting the co-occurrence of 

related diseases in the same patient. For an instance, many well-known and influential 

environmental factors such as smoking, diet, and alcohol intake are strongly associated 

with diabetes type 1 and type 2, and obesity. Also, many serious chronic diseases, 

such as cancer and diabetes, are complex diseases influenced by a combination of 

environment and epistasis between many genes. Therefore, a patient diagnosed for a 

combination of diseases and exposed to specific environmental, lifestyle and genetic 

risk factors may be at a considerable risk of developing several other genetically and 

environmentally related diseases. It is now well accepted that phenotypes are 

determined by genetic material under environmental influences. Increasing evidence 

has revealed that microRNAs (miRNAs) play important roles in the development and 

progression of human diseases. Functionally related miRNAs tend to be associated 

with phenotypically similar diseases [10]. Recently, genome-wide association studies 

(gwas) have proved useful as a method for exploring phenotypic associations with 

diseases. Single-nucleotide polymorphisms (SNPs), a variation of a single nucleotide, 

are assumed to play a major role in causing phenotypic differences between 

individuals. It has become possible to assess systematically the contribution of 

common SNPs to complex disease. In copy number variations (CNVs) longer stretches 

of DNA can get lost, duplicated, or rearranged in the genome of an individual that 

cause various phenotypic abnormalities. CNVs are significantly associated with the risk 

of complex human diseases including inflammatory autoimmune disorders, diabetes 

etc. The development of type 2 diabetes has also been known to be influenced by 

genetic and environmental factors. In this way, diseases may share many distinct types 

of relationships with varying levels of risk for disease comorbidity. Thus, a singular view 

of dependencies among diseases is not sufficient. As more and more ontology, 

phenotype, omics and environmental data sets become publicly available, it is 

beneficial to improve our understanding of human diseases and diseases comorbidities 

based on these new system-level biological data. The integration analysis of various 

'omic' data has become increasingly widespread because each approach has intrinsic 

caveats. For instance, important information may be missing because of false 
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negatives or misleading because of false positives. Some studies have indicated that 

these limitations can be mitigated by integrating two or more omic datasets. Several 

studies have reported on the role of a single molecular or phenotypic measure to 

capture disease-disease relationships (such as shared genes or gene ontology), but a 

comprehensive understanding requires to inspect multiple sources of evidence 

including miRNA-based relationships, shared environmental factors, ontology, SNPs, 

CNVs and phenotypic manifestations. 

2 Copy number variation  

Whole genome sequencing enables a high resolution view of the human genome and 

provides unique insights into genome structure at an unprecedented scale. Genetic 

variation in the human genome occurs in many forms ranging from large chromosomal 

abnormalities to single nucleotide variations, each with varying functional significance. 

DNA copy number variation (CNV) has been recognised as an important source of 

genetic variation. Copy number variation (CNV) is one such genetic variation that can 

range from a few kilobases to megabases, and involve deletions, duplications, 

insertions or translocations. The associations between CNVs and phenotypic variation 

or disease-susceptibility are increasingly being investigated, with the most obvious 

mechanism being gene-dosage caused by variations in the number of copies of a gene 

or its associated regulatory elements. Several methods and tools can be used for 

determining CNV information based on sequencing data. To characterise the 

landscape of structure variations, we used whole genome sequencing data from 

publicly available 1000 genomes project 

(http://www.1000genomes.org/data#DataAccess). The workflow of the CNV sequence 

data from the 1000 genomes database is shown in figure 1. There have been a number 

of tools to infer copy number variation in the genome from the sequence data. In our 

pipeline we have used different unix based software tools for the analysis of the data to 

identify the CNV for the type 2 diabetes. We have used FastQC tool for the qualitity 

control, filtering and trimming of the raw sequence data. Bowtie is used for mapping of 

type 2 diabetes sequence with the reference sequence, and samtools is used for 

converting sam to bam format of the data, and sorting and merging of the reads. 

Finally, GATK toolkit is used for CNV calling to identify the CNV for the type 2 diabetes.  

Then we used the result of the CNV analysis for type 2 diabetes as input of the  

procedure to identify the inflammatory links for the type 2 diabetes. 
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The figure above shows the pipeline we have built to analyse CVN in multi omic data. 

This represents a substantial improvement with respect to previous research (Bae, 

2011; see also McCarroll, 2007). The final graph is the output of the pipeline focusing 

on "Type 2 Diabetes mellitus" (Omim identification is 602228), which is used as input to 

the comorbidity CNV with inflammatory and other diseases (paper in progress).  The 

introduction of the biomedical informatics library tools (Gene ontology and text mining) 

provides means to extract data from medical literature and more output. 

 

 

 

The figure above shows an example of the output statistics of comorbidity(CNV( 

"602228" , "OMIM" )). The OMIM disease id of the "Type 2 Diabetes mellitus" is 

602228, which is used as input to the comorbidity CNV. We show disease comorbidity 

for the "Type 2 Diabetes mellitus" through the CNVs-disease associations. Then we 

have considered different datasets of inflammatory, T2D diabetes and T1D diabetes 

and we have computed the over expressed and under expressed genes. The datasets 

used are:  Rheumatoid arthritis (GSE1919); Osteoarthritis condition (GSE1919);  

T2D(GSE9006); T1D(GSE9006). Normalization procedures and statistical analysis are 

performed by using Bioconductor R packages (Gentleman, 2004); the background 

correction and normalization is performed by using  (Therneau et al, 2007) algorithm. 

PLIER algorithm produces an improved gene expression value as compared to the 

other algorithms. It accomplishes this by incorporating experimental observations of 
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feature behavior. Specifically, it uses a probe affinity parameter, which represents the 

strength of a signal produced at a specific concentration for a given probe. The probe 

affinities are calculated using data across arrays. The Bioconductor package Limma 

was also used to calculate average expression levels, log fold changes and adjusted p-

values for each probe. Standard anova and Box plots representation were used to 

analyze and check out visually the expression levels of these genes for different 

conditions. This below is a table (2.1) showing the overexpressed and underexpressed 

genes in the four datasets.  

We found that NFKB, Signalling pathways, tgfbeta, TNF and chemokine family of 

genes appear to be common among these diseases (paper submitted). The gene 

families will be analysed using novel methods, explained in the next section. 
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Table 2.1 

3 Pathways, methylation, gene expression data integration 

The previous analysis has revealed that the most overexpressed genes belong to  

NFKB, Signalling pathways, tgfbeta, TNF and chemokine gene family. The sequence 

similarities within each gene family provides a ground for applying phylogenetic 
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methods. We have analysed different families of genes involved in diabetes and 

inflammatory processes. Here we show for the case of the chemokine family. 

Felsenstein proposed the first continuous phylogenetic comparative methods 

procedure, independent contrasts. This assumes a Brownian motion evolving on the 

phylogenetic tree and we observe the tree and contemporary phenotypic sample. It 

was observed that such a model does not allow for modeling adapting traits. A 

Brownian motion will mean that the phenotype randomly oscillates around the ancestral 

state. Therefore an Ornstein–Uhlenbeck process was proposed with different regimes 

on the phylogeny to model a phenotype adapting to different conditions (e.g. habitats). 

This was further developed to a trait evolving towards a randomly evolving 

environment. Ornstein–Uhlenbeck models have been also applied to study evolutionary 

rates . 

One can naturally take the evolving phenotype to be measured gene–expression levels 

and apply the aforementioned levels. However it would be more interesting to consider 

how expression levels of different genes co–evolve. In an Ornstein–Uhlenbeck model 

for a multiple, say k, co-adapting traits is presented, dY (t) = −A(Y (t) − θ(t)) dt + ΣdB(t), 

where A, Σ are k×k matrices, θ is a vector step function over the phylogeny and B(t) is 

a k–dimensional standard Wiener process. The maximum–likelihood estimation 

procedure can further be combined into the estimation procedure measurement error 

(or intra–species variability). This is an important factor to keep in mind as micro–array 

experiments can be very noisy and measurement variance can have a profound effect 

on a phylogenetic analysis (paper in progress; see also Bartoszek et al, 2011; Butler et 

al, 2004). The data we have analysed is the chemokine receptors and chemokine 

ligands. 23 chemokine receptors were collected from NCBI Gene database manually 

CCBP2, CCR1, CCR10, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, 

CCRL1, CCRL2, CMKLR1, CX3CR1, CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, 

CXCR6, CXCR7, XCR1. 46 chemokine ligands and their binding information with the 

corresponding receptors were obtained from (reference). The binding information 

between the ligands and receptors are shown in the Table 3.1. 

 

Table 3.1 Chemokine receptors and the binding ligands 

Recept
or 

Binding chemokine ligands 

CX3CR CCL26;CX3CL11 
XCR1 XCL1;XCL2 
CXCR6 CXCL16 
CXCR5 CXCL13 
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CXCR4 CXCL12 
CXCR2 CXCL1;CXCL2;CXCL3;CXCL5;CXCL6;CXCL7;CXCL8 
CXCR1 CXCL6;CXCL7;CXCL8 
CCR9 CCL25 
CCR8 CCL1;CCL16;CCL18 
CCR6 CCL20 
CCR4 CCL17;CCL22 
CCR3 CCL3L1;CCL5;CCL7;CCL11;CCL13;CCL15;CCL24;CCL26;CCL28;CXCL9;CXCL10;CXCL11 
CCR10 CCL27;CCL28 
CCR7 CCL19;CCL21 
CXCR3 CCL11;CXCL9;CXCL10;CXCL11;CXCL4 
CCR2 CCL2;CCL7;CCL8;CCL11;CCL13;CCL16;CCL24;CCL26 
CCR5 CCL3;CCL3L1;CCL4;CCL4L1;CCL5;CCL7;CCL8;CCL11;CCL13;CCL14;CCL16;CCL26;CXCL1

1 
CCR1 CCL3;CCL3L1;CCL4;CCL5;CCL7;CCL8;CCL13;CCL14;CCL15;CCL16;CCL23;CCL26;CCL6;C

CL9;CCL10 
CXCR7 CXCL11;CXCL12 
 
 
For all the members we have considered the gene expression and methylation data for 

diabetes and inflammatory diseases. We summarise the following data collection and 

results: 

 

a) Gene expression in diabetes 

 

GSE9006: Gene expression in peripheral blood mononuclear cells (PBMCs) from 

children with diabetes measured by Affymetrix HGU133A, including 24 healthy samples 

(Health), 43 type 1 diabetes patients (T1D) and 12 type 2 diabetes patients (T2D). 

The raw data was downloaded from GEO database and was processed by using RMA 

method in the “affy” package from Bioconductor.  

 

b) DNA methylation in diabetes 

 

GSE34008: DNA methylation profiling of whole blood were measured by using 

Illumina's Infinium HumanMethylation27 Beadchip array. The dataset encompasses 

profiles of 12 non-diabetic control blood donors and 12 type-2 diabetic (T2D) 

individuals. GSE56606: Genome-wide DNA methylation profiles of purified CD14 and 

CD4 monocytes were generated by using HumanMethylation27 Beadchip array from 

monozygotic (MZ) twin pairs (50% T1D onset pairs and normal pairs). There are 100 

samples in total, including 17 T1D samples and 35 normal samples in CD14, and 15 

T1D samples and 33 normal samples in CD4. The methylation data were extracted 

from Series Matrix Files which are downloaded from GEO database. The methylation 
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levels (beta values) are the ratios of methylated signals (M) with the corresponding 

total signals (M+U).  

 

Both the gene expression and methylation data of diabetes were downloaded from 

TCGA. 

 
 

 
 Figure 3.1 Phylogenetic tree using a Bayesian approach (other approaches have been 

investigated) 
 
 
Differential expression and methylation 

Differentially expressed genes (DEG) and differentially methylated genes (DMG) were 

identified by using T test, with p-value<0.05. (Because of the weak significance, there 

is not DMG after the BH correction. Here, the DEG and DMG results are not corrected 

by FDR correction.) As shown in Table 3.1, “0” represents that the preceptor is not 

differentially expressed/methylated, and “1” means the opposite. CCR4, CCRL1, 

CCRL2 and CXCR2 are all differentially expressed in both T1D and T2D. CCR2, 

CCR3, CCR5 and CX3CR1 only differentially expressed in T2D, while CXCR3 only 

differentially expressed in T1D. There are only 3 receptors that are differentially 

methylated in T1D or T2D, and there is not overlap between DEGs and DMGs, which 

may suggest that the chemokine receptors have different expression and methylation 

patterns during the genesis of diabetes. 
 

Table 3.2 Differentially expressed/methylated receptors in diabetes 

Receptor Expression Methylation 
T1D vs N T2D vs N T1D vs N cd4 T2D vs N cd14 T2D vs N 
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CCBP2 0 0 0 0 0 
CCR1 0 0 0 0 0 

CCR10 0 0 0 1 0 
CCR2 0 1 NA NA NA 
CCR3 0 1 0 0 0 
CCR4 1 1 0 0 0 
CCR5 0 1 NA NA NA 
CCR6 0 0 0 0 0 
CCR7 1 0 0 0 0 
CCR8 0 0 0 0 0 
CCR9 0 0 0 0 0 

CCRL1 1 1 NA NA NA 
CCRL2 1 1 0 0 0 

CMKLR1 0 0 0 0 0 
CX3CR1 0 1 0 0 0 
CXCR1 0 0 0 0 0 
CXCR2 1 1 0 0 0 
CXCR3 1 0 0 0 0 
CXCR4 0 0 0 0 0 
CXCR5 0 0 0 1 0 
CXCR6 0 0 0 0 1 
CXCR7 0 0 0 0 0 
XCR1 0 0 0 0 0 

 
Expression and methylation patterns of chemokine receptors 

The heatmaps show the expression and methylation of the receptors in diabetes. The 

dark color (red) means the low expression/methylation level, and the lighter color 

means the higher level. From these figures, we will get some results as follows: 

 

a) There is big inconsistence between expression and methylation of the receptors. 

b) The methylation patterns in CD4 cells and CD14 cells of T1D are not the same, but 

the clusters of the receptors are similar. 

c) There are slight differences in the methylation patterns between T2D and T1D. 
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Figure 3.2 Heatmap of the expression of receptors in Normal, T1D and T2D 
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Figure 3.3 Heatmap of the methylation of receptors in Normal and T1D CD4 cells 
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Figure 3.4 Heatmap of the methylation of receptors in Normal and T1D CD14 cells 
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Figure 3.5 Heatmap of the methylation of receptors in Normal and T2D 

 
Statistical analysis didn’t show the correlation between methylation and expression. 

Here, we use a Ornstein Uhlenbeck model to explore the relationships between 

expression and methylation. We considered 3 adaptive evolution models to describe 

how phenotypes adapt to each during the phylogeny. We applied these models on the 

chemokine receptor gene family to explore the potential correlations between 

expression and methylation. The phylogenetic trees of chemokine receptors are 

constructed by using MrBayes which is shown in Figure 2.2. The analysis was 

performed on 3 sample sets:  

- T1D samples 

- T2D samples 

- Healthy samples 

The phenotypes considered are the receptor expressions in PBMC and methylation in 

T1D-cd4, T1D-cd14, T2D-whole blood (depending on availability) measurements. 

 

The main output parameters for the model include (): 

a) Matrix A, if A is non-diagonal, there are interactions in the primary optimum. 
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b) Syy, if Syy is non-diagonal, there are interactions in the stochastic perturbations. 

c) mPsi 

d) vY0 

 
Output of the best model for healthy samples:  

 
 
 
Output of the best model for T1D samples: 
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Output of the best model for T2D samples: 

 
 
All the models for the 3 models have diagonal matrix (A) and all correlations come from 

the diffusion component (Syy). The estimates of the drift vector (mPsi, optimum value) 

are similar in all cases. The results suggest that in diabetes the difference between the 

different conditions was in the diffusion coefficient whilst the drift was similar. 
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4 Expression and methylation of chemokine receptors  

 
1) DEGs and DMGs  
 
Differentially expressed receptors: 
"CCR6"   "CCR3"   "CXCR5"  "CCRL1"  "CCR7"   "CCR10"  "CXCR7"  "CMKLR1" "CCR8"   
"CCR1"   "CXCR3"  "CCR5"   "CXCR6"  "CX3CR1" "CCBP2"  "CCR2" 
 
Differentially expressed ligands: 
"CXCL13" "CCL19"  "CXCL1"  "CCL15"  "CCL26"  "CCL21"  "CXCL6"  "CCL18"  "CXCL2"  
"CXCL12" "CXCL11" "CCL20"  "CXCL5"  "CXCL3"  "CCL23"  "CCL8"   "CCL28"  "XCL1"  "CCL5"   
"CCL24"  "CCL11"  "CCL16"  "CCL4"   "CCL13"  "XCL2"   
 
Differentially methylated receptors: 
"CCR10"  "CCR1"   "CCR3"   "CCR6"   "CCR7"   "CCR8"   "CCR9"   "CCRL2"  "CMKLR1" 
"CX3CR1" "CXCR2"  "CXCR3"  "CXCR4"  "CXCR5"  "CXCR7"  "XCR1" 
 
Differentially methylated ligands: 
"CXCL12" "CCL8"   "CXCL1"  "CCL7"   "CXCL5"  "CCL22"  "CXCL11" "CCL18"  "CCL19"  
"CCL20"  "CCL27"  "CCL5"   "CCL2"   "CCL23"  "CXCL13" "CCL1"   "CCL25"  "CXCL6"  "CCL15"  
"CCL13"  "CCL11" 
 
Compared with the results in diabetes, more chemokines ligands and receptors are differentially 
expressed and methylated, and some of them show the same tendencies in the expression and metylation 
patterns.  
 
2) Correlations between expression and methylation 
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Figure 4.1 Co-expression between ligands and receptors, calculated by Pearson 

Correlation Coefficient (PCC). The dark color represent low PCC values. 
 

 
Figure 4.2 Correlations between ligands methylation and receptors methylation, 

calculated by Pearson Correlation Coefficient (PCC). The dark color represent low 

PCC values. 
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Figure 4.3 Distribution for the PCC between expression and methylation for the 

receptors/chemokines. 

 

To evaluate the correlations between expression levels and methylation levels, we take 

the common samples (165) in both expression dataset and methylation dataset of 

diabetes. The correlations are calculated by PCC, and the distribution is bimodal 

distribution which shows a small peak in the negative correlations. This is in 

accordance with the regulation roles of DNA methylation which is mainly repressing the 

transcription. It suggests the correlations between the expression and methylation of 

chemokine receptors/ligands in diabetes. 

 

3) multivariate Ornstein Uhlenbeck analysis 

 

The expression and methylation data for diabetes we used were searched and 

downloaded from GEO database. All of the data are from blood tissue, but there are 

some differences in the cell lines between the datasets. The expression data is from 

peripheral blood mononuclear cells. The methylation data for T2D is from the whole 

blood, while the methylation data for T1D is from purified CD4+ and CD14+ cells from 

blood. It is reported that epigenetic regulations performs in tissue-specific ways, so the 

mixed cell lines of the diabetes data may cover the potential correlations between 

methylation and expression. In the colon diabetes, we just kept the common sample to 
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calculate the correlations between methylation and correlation, and it shows weak 

negative correlations. The phylogenetic tree of receptors was also the one constructed 

by MrBayes. The expression and methylation levels were averaged across all the 

corresponding samples for diabetes and normal respectively.  

The output for best models of Normal samples and inflammatory samples respectively: 

 

Normal samples                       inflammatory samples 

                              
 
The diagonal A and Syy indicate that there is not interactions between Exp and Meth, 

that is, the expression and methylation evolve independently of each other. The 

statistical analysis suggests that there are some negative correlations between 

methylation and gene expression. Further final evaluation of the overall data are on 

going at the time of this report. We will get insights from the collaboration with Anne 

Ferguson Smith’s group (Cambridge). 

 

5 Conclusions 

We have developed novel algorithms and pipelines that allow to integrate several 

omics data (CVN, methylation, gene expression). The large amount of data we are 

producing will be interpreted using artificial intelligence programs. Two papers have 

been completed (in submission) and we hope to have more.  
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