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1 Introduction

Diseases with similar genetic, environmental, and lifestyle risk factors may be co-
morbid in patients or may be risk factors for additional conditions [6]. Shared risk and
environmental factors have similar consequences, prompting the co-occurrence of
related diseases in the same patient. For an instance, many well-known and influential
environmental factors such as smoking, diet, and alcohol intake are strongly associated
with diabetes type 1 and type 2, and obesity. Also, many serious chronic diseases,
such as cancer and diabetes, are complex diseases influenced by a combination of
environment and epistasis between many genes. Therefore, a patient diagnosed for a
combination of diseases and exposed to specific environmental, lifestyle and genetic
risk factors may be at a considerable risk of developing several other genetically and
environmentally related diseases. It is now well accepted that phenotypes are
determined by genetic material under environmental influences. Increasing evidence
has revealed that microRNAs (miRNAs) play important roles in the development and
progression of human diseases. Functionally related miRNAs tend to be associated
with phenotypically similar diseases [10]. Recently, genome-wide association studies
(gwas) have proved useful as a method for exploring phenotypic associations with
diseases. Single-nucleotide polymorphisms (SNPs), a variation of a single nucleotide,
are assumed to play a major role in causing phenotypic differences between
individuals. It has become possible to assess systematically the contribution of
common SNPs to complex disease. In copy number variations (CNVs) longer stretches
of DNA can get lost, duplicated, or rearranged in the genome of an individual that
cause various phenotypic abnormalities. CNVs are significantly associated with the risk
of complex human diseases including inflammatory autoimmune disorders, diabetes
etc. The development of type 2 diabetes has also been known to be influenced by
genetic and environmental factors. In this way, diseases may share many distinct types
of relationships with varying levels of risk for disease comorbidity. Thus, a singular view
of dependencies among diseases is not sufficient. As more and more ontology,
phenotype, omics and environmental data sets become publicly available, it is
beneficial to improve our understanding of human diseases and diseases comorbidities
based on these new system-level biological data. The integration analysis of various
'omic' data has become increasingly widespread because each approach has intrinsic

caveats. For instance, important information may be missing because of false
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negatives or misleading because of false positives. Some studies have indicated that
these limitations can be mitigated by integrating two or more omic datasets. Several
studies have reported on the role of a single molecular or phenotypic measure to
capture disease-disease relationships (such as shared genes or gene ontology), but a
comprehensive understanding requires to inspect multiple sources of evidence
including miRNA-based relationships, shared environmental factors, ontology, SNPs,

CNVs and phenotypic manifestations.

2 Copy number variation

Whole genome sequencing enables a high resolution view of the human genome and
provides unique insights into genome structure at an unprecedented scale. Genetic
variation in the human genome occurs in many forms ranging from large chromosomal
abnormalities to single nucleotide variations, each with varying functional significance.
DNA copy number variation (CNV) has been recognised as an important source of
genetic variation. Copy number variation (CNV) is one such genetic variation that can
range from a few kilobases to megabases, and involve deletions, duplications,
insertions or translocations. The associations between CNVs and phenotypic variation
or disease-susceptibility are increasingly being investigated, with the most obvious
mechanism being gene-dosage caused by variations in the number of copies of a gene
or its associated regulatory elements. Several methods and tools can be used for
determining CNV information based on sequencing data. To characterise the
landscape of structure variations, we used whole genome sequencing data from
publicly available 1000 genomes project
(http://www.1000genomes.org/data#DataAccess). The workflow of the CNV sequence
data from the 1000 genomes database is shown in figure 1. There have been a number
of tools to infer copy number variation in the genome from the sequence data. In our
pipeline we have used different unix based software tools for the analysis of the data to
identify the CNV for the type 2 diabetes. We have used FastQC tool for the qualitity
control, filtering and trimming of the raw sequence data. Bowtie is used for mapping of
type 2 diabetes sequence with the reference sequence, and samtools is used for
converting sam to bam format of the data, and sorting and merging of the reads.
Finally, GATK toolkit is used for CNV calling to identify the CNV for the type 2 diabetes.
Then we used the result of the CNV analysis for type 2 diabetes as input of the

procedure to identify the inflammatory links for the type 2 diabetes.
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The figure above shows the pipeline we have built to analyse CVN in multi omic data.
This represents a substantial improvement with respect to previous research (Bae,
2011; see also McCarroll, 2007). The final graph is the output of the pipeline focusing
on "Type 2 Diabetes mellitus" (Omim identification is 602228), which is used as input to
the comorbidity CNV with inflammatory and other diseases (paper in progress). The
introduction of the biomedical informatics library tools (Gene ontology and text mining)

provides means to extract data from medical literature and more output.

> comorbidityCNV (7602228” , "OMIM” )

SYMBOL OMIM ENTREZID PATH GO EVIDENCE
TCEF7L2 602228 6934 04310 GO:0005515 IPI
TCE7L2 602228 6934 04310 GO:0005515 IPI
TCEF7L2 602228 6934 04310 GO:0005515 IPI
TCE7L2 602228 6934 04310 GO:0005515 IPI
TCF7L2 602228 6934 04310 GO:0005515 IPI
ONTOLOGY CNV.ID Chr Start End VarSubtype
MF nsv7211 10 108617417 118351740 Inversion
MF nsv7553 10 114845707 114890646 Loss

MF esv2074123 10 114876971 114877374 Deletion
MF nsv24033 10 114877162 114877217 Loss

MF nsvhb27837 10 114888608 114911079 Loss

The figure above shows an example of the output statistics of comorbidity(CNV(
"602228" , "OMIM" )). The OMIM disease id of the "Type 2 Diabetes mellitus" is
602228, which is used as input to the comorbidity CNV. We show disease comorbidity
for the "Type 2 Diabetes mellitus" through the CNVs-disease associations. Then we
have considered different datasets of inflammatory, T2D diabetes and T1D diabetes
and we have computed the over expressed and under expressed genes. The datasets
used are: Rheumatoid arthritis (GSE1919); Osteoarthritis condition (GSE1919);
T2D(GSE9006); T1D(GSE9006). Normalization procedures and statistical analysis are
performed by using Bioconductor R packages (Gentleman, 2004); the background
correction and normalization is performed by using (Therneau et al, 2007) algorithm.
PLIER algorithm produces an improved gene expression value as compared to the

other algorithms. It accomplishes this by incorporating experimental observations of
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feature behavior. Specifically, it uses a probe affinity parameter, which represents the
strength of a signal produced at a specific concentration for a given probe. The probe
affinities are calculated using data across arrays. The Bioconductor package Limma
was also used to calculate average expression levels, log fold changes and adjusted p-
values for each probe. Standard anova and Box plots representation were used to
analyze and check out visually the expression levels of these genes for different
conditions. This below is a table (2.1) showing the overexpressed and underexpressed

genes in the four datasets.

We found that NFKB, Signalling pathways, tgfbeta, TNF and chemokine family of
genes appear to be common among these diseases (paper submitted). The gene

families will be analysed using novel methods, explained in the next section.
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T1D (PBMCs) T2D (PBMCs) Osteoarthritis Rheumatoid arthritis

Gene Symbol  P.Value Gene Symbol  P.Value Gene Symbol  P.Value Gene Symbol  P.Value
TNFAIP3 1.77E-07 TRIM2 4.75E-05 NFKBIA 5.30E-05 TGFBR3 2.40E-08
NFKBIA 1.37E-05 AKT2 0.000173708 | TNFAIP3 8.45E-05 MAPKI13 6.35E-06
TNFSF14 0.000356257 | AKT3 0.000222778 | TGFBR3 0.000120087 | TGFA 7.71E-06
TNFRSF17 0.000850768 | RELA 0.000299556 | MAPKI13 0.001040518 | TRIM2 0.000182868
CCR5 0.00089995 TNFAIP1 0.00063572 TGFA 0.002815045 | TNFSF9 0.000363318
TGFBR2 0.001134511 | NFKBIA 0.000791186 | TNFSF9 0.003727685 | TNFRSFIB 0.000479444
PDGFC 0.004640007 | TGFBI1 0.000835585 | BMP2 0.004106045 | TNFRSF17 0.000514263
TNFRSFIA 0.004647921 | MAP3K7 0.00084375 IF127 0.005217842 | TNFAIP6 0.000542038
MAPKI13 0.007592876 | REL 0.000888489 | TNFRSF11A  0.008025001 | IFI27 0.000577389
TNFAIP1 0.009489591 | TNFRSF14 0.001387678 | AKT3 0.010452435 | CCRS 0.000586357
NFKB2 0.009642252 | TNFSF14 0.001827428 | TNF 0.012861793 | SQSTMI 0.0016662
NUP62 0.010822798 | TRAF6 0.002180766 | TGFB2 0.015822861 | RELB 0.001691721
TNFRSF13B  0.013286132 | TNFAIP3 0.002634127 | TGFBRI 0.023892893 | TNFSF10 0.001724084
TNFSF18 0.015538582 | TGFA 0.002730714 | RELA 0.026085929 | TGFBI 0.001929109
TNFRSF10C  0.016132998 [ MAPKI14 0.003496727 | TGFB3 0.030358653 | MAPKI10 0.001939754
AKT3 0.018507548 | NFKB2 0.003812117 | IL6 0.034326865 | TNFSF11 0.001986958
TGFBI 0.018586844 | NFKBI 0.003953564 [ TGFBR2 0.037806678 | TNF 0.002813131
MAPK4 0.030868863 | TNFSF10 0.004168785 | IGFIR 0.038400057 | MAPK1 0.002855606
CSF1 0.03300604 TNFAIP2 0.010169047 | TNFRSF1B 0.04339234 NFKBI1 0.003135214
TNFAIP6 0.033038618 | CSFI 0.013497857 | PDGFRA 0.044040037 | LRPS 0.00361201
TRAF6 0.034594707 | MAPK1 0.015620066 | TNFSF11 0.04904459 TGFBR1 0.007130922
BMPR2 0.035076531 | NFKB2 0.019309942 TNFSF8 0.016486512
LRP6 0.037451428 | TNFRSF13B  0.020690122 MAPK?7 0.017046898
SQSTM1 0.037820278 | PDGFRA 0.022393241 TNFRSF25 0.020331139
TGFB3 0.041756839 | MAPKI12 0.02749298 TNFSF14 0.024364697
PDGFA 0.042711089 | MAPK3 0.028945413 NUP62 0.027359276
TGFA 0.046157749 | AKTI1 0.029425624 TNFAIP8 0.030460145
IFI44L 0.047610377 | MAPKI11 0.031190453 CSF1 0.032119483

TNFRSF8 0.031377416 TNFRSF1IB  0.032600528

TNFRSF10B  0.032735653 TNFRSF9 0.033094969

IL6 0.036438795 NFKBIA 0.047416796

TNFRSF21 0.038752772

TGFBR2 0.046911857

IF144L 0.047309419

Table 2.1

3 Pathways, methylation, gene expression data integration

The previous analysis has revealed that the most overexpressed genes belong to
NFKB, Signalling pathways, tgfbeta, TNF and chemokine gene family. The sequence

similarities within each gene family provides a ground for applying phylogenetic
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methods. We have analysed different families of genes involved in diabetes and
inflammatory processes. Here we show for the case of the chemokine family.
Felsenstein proposed the first continuous phylogenetic comparative methods
procedure, independent contrasts. This assumes a Brownian motion evolving on the
phylogenetic tree and we observe the tree and contemporary phenotypic sample. It
was observed that such a model does not allow for modeling adapting traits. A
Brownian motion will mean that the phenotype randomly oscillates around the ancestral
state. Therefore an Ornstein—Uhlenbeck process was proposed with different regimes
on the phylogeny to model a phenotype adapting to different conditions (e.g. habitats).
This was further developed to a trait evolving towards a randomly evolving
environment. Ornstein—Uhlenbeck models have been also applied to study evolutionary
rates .

One can naturally take the evolving phenotype to be measured gene—expression levels
and apply the aforementioned levels. However it would be more interesting to consider
how expression levels of different genes co—evolve. In an Ornstein—Uhlenbeck model
for a multiple, say k, co-adapting traits is presented, dY (t) = —A(Y (t) — 6(t)) dt + ZdB(t),
where A, ¥ are kxk matrices, 0 is a vector step function over the phylogeny and B(t) is
a k—dimensional standard Wiener process. The maximum-likelihood estimation
procedure can further be combined into the estimation procedure measurement error
(or intra—species variability). This is an important factor to keep in mind as micro—array
experiments can be very noisy and measurement variance can have a profound effect
on a phylogenetic analysis (paper in progress; see also Bartoszek et al, 2011; Butler et
al, 2004). The data we have analysed is the chemokine receptors and chemokine
ligands. 23 chemokine receptors were collected from NCBI Gene database manually
CCBP2, CCR1, CCR10, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9,
CCRL1, CCRL2, CMKLR1, CX3CR1, CXCR1, CXCR2, CXCR3, CXCR4, CXCRS5,
CXCR6, CXCR7, XCR1. 46 chemokine ligands and their binding information with the
corresponding receptors were obtained from (reference). The binding information

between the ligands and receptors are shown in the Table 3.1.

Table 3.1 Chemokine receptors and the binding ligands

Recept  Binding chemokine ligands
or

CX3CR CCL26;CX3CL11
XCR1 XCL1;XCL2
CXCR6 CXCL16

CXCR5 CXCL13
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CXCR4 CXCL12

CXCR2 CXCL1;CXCL2;CXCL3;CXCL5;CXCL6;CXCL7;CXCL8

CXCR1 CXCL6;CXCL7;CXCL8

CCR9 CCL25

CCRS8 CCL1;CCL16;CCL18

CCRG6 CCL20

CCR4 CCL17;CCL22

CCRS3 CCL3L1;CCL5;CCL7;CCL11;CCL13;CCL15;CCL24;CCL26;CCL28;CXCL9;CXCL10;CXCL11

CCR10 CCL27;CCL28

CCR7 CCL19;CCL21

CXCR3 CCL11;CXCL9;CXCL10;CXCL11;CXCL4

CCR2 CCL2;CCL7;CCL8;CCL11;CCL13;CCL16;CCL24;CCL26

CCRS CCL3;CCL3L1;CCL4;CCL4L1;CCL5;CCL7;CCL8;CCL11;CCL13;CCL14;CCL16;CCL26;CXCL1
1

CCR1 CCL3;CCL3L1;CCL4;CCL5;CCL7;CCL8;CCL13;CCL14;CCL15;CCL16;CCL23;CCL26;CCL6;C
CL9;CCL10

CXCR7 CXCL11;CXCL12

For all the members we have considered the gene expression and methylation data for
diabetes and inflammatory diseases. We summarise the following data collection and

results:

a) Gene expression in diabetes

GSE9006: Gene expression in peripheral blood mononuclear cells (PBMCs) from
children with diabetes measured by Affymetrix HGU133A, including 24 healthy samples
(Health), 43 type 1 diabetes patients (T1D) and 12 type 2 diabetes patients (T2D).

The raw data was downloaded from GEO database and was processed by using RMA

method in the “affy” package from Bioconductor.

b) DNA methylation in diabetes

GSE34008: DNA methylation profiling of whole blood were measured by using
lllumina's Infinium HumanMethylation27 Beadchip array. The dataset encompasses
profiles of 12 non-diabetic control blood donors and 12 type-2 diabetic (T2D)
individuals. GSE56606: Genome-wide DNA methylation profiles of purified CD14 and
CD4 monocytes were generated by using HumanMethylation27 Beadchip array from
monozygotic (MZ) twin pairs (50% T1D onset pairs and normal pairs). There are 100
samples in total, including 17 T1D samples and 35 normal samples in CD14, and 15
T1D samples and 33 normal samples in CD4. The methylation data were extracted

from Series Matrix Files which are downloaded from GEO database. The methylation
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levels (beta values) are the ratios of methylated signals (M) with the corresponding

total signals (M+U).

Both the gene expression and methylation data of diabetes were downloaded from
TCGA.
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Figure 3.1 Phylogenetic tree using a Bayesian approach (other approaches have been
investigated)

Differential expression and methylation

Differentially expressed genes (DEG) and differentially methylated genes (DMG) were
identified by using T test, with p-value<0.05. (Because of the weak significance, there
is not DMG after the BH correction. Here, the DEG and DMG results are not corrected
by FDR correction.) As shown in Table 3.1, “0” represents that the preceptor is not
differentially expressed/methylated, and “1” means the opposite. CCR4, CCRLA1,
CCRL2 and CXCR2 are all differentially expressed in both T1D and T2D. CCR2,
CCR3, CCR5 and CX3CR1 only differentially expressed in T2D, while CXCRS3 only
differentially expressed in T1D. There are only 3 receptors that are differentially
methylated in T1D or T2D, and there is not overlap between DEGs and DMGs, which
may suggest that the chemokine receptors have different expression and methylation

patterns during the genesis of diabetes.

Table 3.2 Differentially expressed/methylated receptors in diabetes

Expression Methylation

Receptor

TIDvsN | T2DvsN [ T1DvsNcd4 | T2DvsNcd14 | T2DvsN
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CCBP2 0 0 0 0 0
CCR1 0 0 0 0 0
CCR10 0 0 0 1 0
CCR2 0 1 NA NA NA
CCR3 0 1 0 0 0
CCR4 1 1 0 0 0
CCR5 0 1 NA NA NA
CCR6 0 0 0 0 0
CCRY 1 0 0 0 0
CCR8 0 0 0 0 0
CCR9 0 0 0 0 0
CCRL1 1 1 NA NA NA
CCRL2 1 1 0 0 0
CMKLR1 0 0 0 0 0
CX3CR1 0 1 0 0 0
CXCR1 0 0 0 0 0
CXCR2 1 1 0 0 0
CXCR3 1 0 0 0 0
CXCR4 0 0 0 0 0
CXCR5 0 0 0 1 0
CXCR6 0 0 0 0 1
CXCRY 0 0 0 0 0
XCR1 0 0 0 0 0

Expression and methylation patterns of chemokine receptors
The heatmaps show the expression and methylation of the receptors in diabetes. The
dark color (red) means the low expression/methylation level, and the lighter color

means the higher level. From these figures, we will get some results as follows:

a) There is big inconsistence between expression and methylation of the receptors.
b) The methylation patterns in CD4 cells and CD14 cells of T1D are not the same, but
the clusters of the receptors are similar.

c) There are slight differences in the methylation patterns between T2D and T1D.
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Figure 3.2 Heatmap of the expression of receptors in ormal, T1D and T2D
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Figure 3.3 Heatmap of the methylation of receptors in Normal and T1D CD4 cells
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Figure 3.4 Heatmap of the methylation of receptors in Normal and T1D CD14 cells
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Figure 3.5 Heatmap of the methylation of receptors in Normal and T2D

Statistical analysis didn’t show the correlation between methylation and expression.
Here, we use a Ornstein Uhlenbeck model to explore the relationships between
expression and methylation. We considered 3 adaptive evolution models to describe
how phenotypes adapt to each during the phylogeny. We applied these models on the
chemokine receptor gene family to explore the potential correlations between
expression and methylation. The phylogenetic trees of chemokine receptors are
constructed by using MrBayes which is shown in Figure 2.2. The analysis was
performed on 3 sample sets:

- T1D samples

- T2D samples

- Healthy samples
The phenotypes considered are the receptor expressions in PBMC and methylation in

T1D-cd4, T1D-cd14, T2D-whole blood (depending on availability) measurements.

The main output parameters for the model include ():

a) Matrix A, if A is non-diagonal, there are interactions in the primary optimum.
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b) Syy, if Syy is non-diagonal, there are interactions in the stochastic perturbations.
c) mPsi
d) vYO

Output of the best model for healthy samples:

A

Exp cd4 cdl4 wholeBlood
Exp 4.,023304 0.00000 0.000000 0.000000
cd4 0.000000 10.03347 0.000000 0.000000
cdl4 0.000000 0.00000 3.240734 0.000000
wholeBlood 0.000000 0.00000 0.000000 7.733192
mPsi

reg.1l
Exp 6.3154589
cd4 0.5305160
cdl4 0.4647229
wholeBlood 0.5433120
vYO

[,1]
Exp 6.3154589
cd4 0.5305160
cdl4 0.4647229
wholeBlood 0.5433120
Syy

Exp cd4 cdl4 wholeBlood
Exp .158506 -3.2683259 3.7808646 -2.5116383

2
cd4 0.000000 0.2237032 0.1477688 1.1301598
cdl4 0.000000 0.0000000 0.0856523 0.6434418
wholeBlood 0.000000 0.0000000 0.0000000 1.0386175

Output of the best model for T1D samples:
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Exp cd4 cdl4
Exp 10.75385 0.000000 0.000000
cd4 0.00000 7.056942 0.000000
cdl4 0.00000 0.000000 2.367516

mPsi

reg.1l
Exp 6.51022867
cd4 .5367576
cdl4 0.4729173

o O

vYO

[»11
Exp 6.5102267

cd4 0.5367576
cdl4 0.4729173
Syy

Exp cd4 cdls4
Exp 0.1008103 8.2502759 -5.5318135
cd4 0.0000000 0.1308512 0.9452561
cdl4 0.0000000 0.0000000 0.5632444

Output of the best model for T2D samples:
a

Exp wholeBlood
Exp 2.59179¢ 0.00000
wholeBlood 0.000000 15.05106

mPsi

reg.1
Exp 6.4688871
wholeBlood 0.5505259

vYO0

[,1]
Exp 6.4688871
wholeBlood 0.5505259

Syy

Exp wholeBlood
Exp 3.911532 -3.306315
wholeBlood 0.000000 1.384991

All the models for the 3 models have diagonal matrix (A) and all correlations come from
the diffusion component (Syy). The estimates of the drift vector (mPsi, optimum value)
are similar in all cases. The results suggest that in diabetes the difference between the

different conditions was in the diffusion coefficient whilst the drift was similar.
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4 Expression and methylation of chemokine receptors

1) DEGs and DMGs

Differentially expressed receptors:
"CCR6" "CCR3" "CXCRS5" "CCRLI1" "CCR7" "CCRI10" "CXCR7" "CMKLRI1" "CCR8"
"CCR1" "CXCR3" "CCR5" "CXCR6" "CX3CR1""CCBP2" "CCR2"

Differentially expressed ligands:

"CXCL13" "CCL19" "CXCLI" "CCLI15" "CCL26" "CCL21" "CXCL6" "CCL18" "CXCL2"
"CXCL12" "CXCL11" "CCL20" "CXCL5" "CXCL3" "CCL23" "CCL8" "CCL28" "XCLI1" "CCL5"
"CCL24" "CCLI11" "CCL16" "CCL4" "CCL13" "XCL2"

Differentially methylated receptors:
"CCR10" "CCR1" "CCR3" "CCR6" "CCR7" "CCR8" "CCR9" "CCRL2" "CMKLR1"
"CX3CR1" "CXCR2" "CXCR3" "CXCR4" "CXCRS5" "CXCR7" "XCRI1"

Differentially methylated ligands:

"CXCL12" "CCL8" "CXCL1" "CCL7" "CXCLS5" "CCL22" "CXCLI11""CCL18" "CCL19"
"CCL20" "CCL27" "CCLS5" "CCL2" "CCL23" "CXCL13""CCL1" "CCL25" "CXCL6" "CCL15"
"CCL13" "CCLI11"

Compared with the results in diabetes, more chemokines ligands and receptors are differentially
expressed and methylated, and some of them show the same tendencies in the expression and metylation

patterns.

2) Correlations between expression and methylation

b
s
&
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Figure 4.1 Co-expression between ligands and receptors, calculated by Pearson

Correlation Coefficient (PCC). The dark color represent low PCC values.

Figure 4.2

b

CXCR5
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CXCR3
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XCR1
CCR3
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Correlations between ligands methylation and receptors methylation,

calculated by Pearson Correlation Coefficient (PCC). The dark color represent low

PCC values.
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Figure 4.3 Distribution for the PCC between expression and methylation for the

receptors/chemokines.

To evaluate the correlations between expression levels and methylation levels, we take
the common samples (165) in both expression dataset and methylation dataset of
diabetes. The correlations are calculated by PCC, and the distribution is bimodal
distribution which shows a small peak in the negative correlations. This is in
accordance with the regulation roles of DNA methylation which is mainly repressing the
transcription. It suggests the correlations between the expression and methylation of

chemokine receptors/ligands in diabetes.

3) multivariate Ornstein Uhlenbeck analysis

The expression and methylation data for diabetes we used were searched and
downloaded from GEO database. All of the data are from blood tissue, but there are
some differences in the cell lines between the datasets. The expression data is from
peripheral blood mononuclear cells. The methylation data for T2D is from the whole
blood, while the methylation data for T1D is from purified CD4+ and CD14+ cells from
blood. It is reported that epigenetic regulations performs in tissue-specific ways, so the
mixed cell lines of the diabetes data may cover the potential correlations between

methylation and expression. In the colon diabetes, we just kept the common sample to
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calculate the correlations between methylation and correlation, and it shows weak

negative correlations. The phylogenetic tree of receptors was also the one constructed

by MrBayes. The expression and methylation levels were averaged across all the

corresponding samples for diabetes and normal respectively.

The output for best models of Normal samples and inflammatory samples respectively:

Normal samples

ey

Exp
Meth

mPsi

Exp
Meth

vYO

Exp
Meth

S'y:y'

Exp
Meth

Exp Meth
15.04%84 0.000000
0.00000 3.872027

reg.1l
0.4927272
0.4834175

[»11
0.4927272
0.4834175

Exp Meth
.89424 0.0000000
0.00000 0.8435389

=

inflammatory samples

ey

Exp
Meth

mPsi

Exp
Meth

vYO

Exp
Meth

Syy

Exp
Meth

Exp Meth

15.04972 0.000000

-

0.00000 2.696873

reg.1

.1831737
.5530236

[,1]

.1831737
.5530236

Exp Meth

7.418253 0.0000000
0.

000000 0.7694774

The diagonal A and Syy indicate that there is not interactions between Exp and Meth,

that is, the expression and methylation evolve independently of each other. The

statistical analysis suggests that there are some negative correlations between

methylation and gene expression. Further final evaluation of the overall data are on

going at the time of this report. We will get insights from the collaboration with Anne

Ferguson Smith’s group (Cambridge).

5 Conclusions

We have developed novel algorithms and pipelines that allow to integrate several

omics data (CVN, methylation, gene expression). The large amount of data we are

producing will be interpreted using artificial intelligence programs. Two papers have

been completed (in submission) and we hope to have more.
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