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Executive Summary 
 

In this deliverable we describe the work done in task 3.1. It 

consisted in particular, in developing a new ODE model for 

diabetes incorporating many aspects of published models 

and includes inflammation and (in a further extension) 

incorporates gut microbiota.  

We have also completed a first implementation of a 

stochastic implementation based on Prism, probabilistic 

model checker (commonly used to calculate probability of 

events and verification of conditions; it can return either the 

exact solution if it operates directly on the structure of the 

Markov chains, or an approximated solution when it 

measures statistically the probability to satisfy a property for 

a set of samples, generated using a Monte Carlo simulation 

of the system model). 
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1 Introduction and background 

Over the past decade it has become apparent that as well as predisposing genetic and 

environmental factors, the development of diabetes (both types I and II), and other 

metabolic diseases, is greatly influenced by inflammatory responses. From an 

evolutionary perspective, it is clear that two of the most crucial functions to species 

survival are the ability to withstand both: periods of starvation and pathogenic attack. It 

is therefore unsurprising that common homeostatic molecules and pathways are able 

to influence both metabolic regulation and immune responses. Whilst the economic 

cost of diabetes worldwide provides a mounting incentive for research progression, 

dysfunctions of such homeostatic pathways are only recently being studied via an 

integrated approach. Their intrinsic complexity necessitates the use of computational 

models, which can be subsequently validated with experimental data. This emerging 

approach, known as, `computational medicine' is becoming increasingly popular as we 

look to create multi-scale models of living systems in disease to help develop improved 

therapies. One of the aims of our approach is therefore to review existing models of 

lymphocyte homeostasis and metabolic disorders (within the context of diabetes) and 

look towards producing a combined model. Diabetes Mellitus is a chronic metabolic 

disorder characterized by deranged insulin function. This is typically due to either 

disrupted production or an acquired cellular resistance to the hormone. The resultant 

impairment in glucose metabolism manifests as postprandial hyperglycemia, which 

leads to the formation of the distinctive triad of symptoms: polyuria, polydipsia and 

polyphagia. 

Whilst the histology of the pancreas in T2D (non-insulin-dependent diabetes mellitus, 

NIDDM) usually appears relatively normal, the beta-cells are defective in glucose 
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detection, which is required for the secretion of insulin. In healthy individuals, a 

postprandial rise in blood glucose is followed by insulin secretion via a process called 

glucose-stimulated insulin secretion (GSIS). This process involves glucose transporters 

within the plasma membranes of the beta cells, such as GLUT-1 and GLUT-2. Insulin 

receptors in peripheral tissues subsequently respond by increasing their uptake of 

glucose, thereby normalizing blood glucose levels. T2D is hence associated with a 

diminished glucose transporter expression. In addition, chronic hyperglycemia (a 

typical trait in obesity and pregnancy) often leads to insulin resistance in the peripheral 

tissues and has also been implicated in the reduction of beta cell replication rates. 

Transition from insulin resistance to diabetes is subsequently caused partial loss of 

beta-cell function. It is well known too that the development of insulin resistance can be 

strongly influenced by the immune system. Recent research experiments focus in 

particular on the adaptive immune system within adipose tissue. Our normal CD4+ T-

cell lymphocyte repertoire consists of the pro-inflammatory TH1 and TH17 cells and the 

anti-inflammatory TH2 and T regulatory cells (Tregs). The relative ratios of these 

different lymphocytes differ in adipose tissue depending on its location (visceral or 

subcutaneous) and state (lean or obese). In mice, for example, the TH1:Treg cell ratio 

in visceral adipose tissue changes from 1.5:1 to 6.5:1 during diet-induced obesity. In 

absolute numbers, this change corresponds approximately three times more 

accumulated TH1 cells per gram of fat. The same study observed similar changes in 

humans with a TH1:Treg ratio of 6:1 in lean people and 12:1 in obese people. This shift 

in adaptive immune cell composition from anti-inflammatory to pro-inflammatory T-cells 

results in the recruitment and accumulation of macrophages. The ensuing release of 

inflammatory cytokines also results in the phenotypic switching of the dominant anti-

inflammatory M2 macrophages, to pro-inflammatory M1 macrophages, the presence of 

which correlates with insulin resistance. 

2 Models 

Experimental models, such as the non-obese diabetic (NOD) mouse and biobreeding 

(BB) rat, have cumulatively provided substantial insight into the mechanisms of 

diabetes development. Today these transgenic mice remain our most important means 

of testing our hypotheses experimentally. The immunological differences between 

mouse and man, however, inevitably impose significant limitations in the congruity of 

their physiologic responses to pathogenic stimuli in humans. Mathematical models, by 
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contrast, offer a rapid, cost-effective and precise means to collate assorted pieces of 

information and experimental data. It is hence vitally important that the qualitative 

properties of a model are congruent with well-established physiology. This can be 

achieved by focusing on the estimation of a few key parameters, which are crucial to 

reproducing biologically realistic behaviors. These mathematical models can be divided 

into two main groups: phenomenological and mechanistic models. Phenomenological 

models concentrate on empirical observations, which within the context of diabetes 

includes data from histological and clinical analysis As such they are data-dependent 

and therefore have limited predictive powers since they are confined to the original 

training data and prior knowledge. Mechanistic models, by contrast, aim towards a 

more fundamental understanding of the physicochemical and biochemical processes 

that underlie a particular observation. They are particularly useful for modeling across a 

wide variety of scales, which could range from intracellular processes, occurring within 

the timescales of molecular interactions (10-14s), to organ level interactions occurring 

over months and years. This makes them incredibly powerful predictive tools for 

extrapolation, but much more difficult to build. They hence often rely upon 

complementary phenomenological models in areas where mechanistic aspects are not 

fully understood. Most comprehensive models of biological systems therefore typically 

employ some descriptive phenomenological component within the structure of an 

explanatory mechanistic model. 

In the first year we have developed a new ODE model for diabetes that incorporates 

many aspects of published models [see for instance ref 1-4] and includes inflammation. 

An extension of this model incorporates gut microbiota. We have also completed a first 

implementation of a stochastic implementation based on Prism probabilistic model 

checker [5]; Prism is commonly used to calculate probability of events and verification 

of conditions; it can return either the exact solution if it operates directly on the 

structure of the Markov chains, or an approximated solution when it measures 

statistically the probability to satisfy a property for a set of samples, generated using a 

Monte Carlo simulation of the system model [6].  

Our new model of diabetes starts from integrating different existing models. The first 

model that we considered was developed by Brian Topp and colleagues [1].  This is 

also the first model that combines beta-cell mass dynamics with glucose dynamics and 

insulin dynamics (see below). Glucose and insulin dynamics are fast while beta-cell 

mass dynamics are slow. Because of that at the beginning of the simulation beta-cell 
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mass can be considered as a parameter and then later, once glucose and insulin 

dynamics reach a steady state changes in the beta-cell mass slowly shift that steady 

state. There are 3 stable points that can be reached depending on the starting state 

which are: Beta = 300, I = 10, G = 100 stable spiral (physiological _fixed point); Beta = 

37, I = 2:8, G = 250 saddle fixed point; Beta = 0, I = 0, G = 600 stable node 

(pathological fixed point). 

If we define diabetes as persistent hyperglycemia, then there are three pathways into 

diabetes according to this model: 1. Regulated Hyperglycemia (moving the 

physiological fixed point to hyperglycemic level); there are 2 ways for this to happen: 

1.1. A defect in beta-cell mass regulation. A small defect in any of the beta-cell mass 

parameters can cause this. 

1.2. A loss of beta-cell mass regulation combined with a defect in glucose dynamics or 

insulin dynamics. 

2. Bifurcation (eliminating the physiological and saddle fixed points).  Any change in 

parameters that lead to elimination of physiological and saddle fixed points is 

considered to be bifurcation pathway to diabetes. One example is for parameter r1 to 

be smaller than 0.0015, then only pathological fixed point exists. 

3. Dynamical Hyperglycemia (driving a trajectory across the separating cline). 

 

 

The variables are: G - Concentration of glucose in the blood; I - Concentration of 

insulin in the blood; beta is the beta-cell mass. 

 

2.1 The Copenhagen model 
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It has been suggested that beta-cells are destroyed by cytokine-induced free radical 

formation before cytotoxic T-helper (Th)-lymphocytes and/or autoantibody- mediated 

cytolysis. This hypothesis is the base of this model. The model is expressed in rate 

equations describing the changes in numbers of beta-cells, macrophages, and Th-

lymphocytes. Being concerned with the earliest events, it explores the conditions 

necessary to maintain self-sustained beta-cell elimination based on the feedback 

between immune cells and insulin-producing cells. 

There are two simple versions of mathematical models outlining the interactions 

between the immune system and the target cells presented in this paper. The first 

version describes the interactions between macrophages and beta-cells [2]. The 

second is an extension of the first one, including the effect of Th-lymphocytes [3]. 

Simple system of equations that reproduce the complete Copenhagen model is as 

follows (they are very similar to Marinkovic [4] model, furthermore, Marinkovic model is 

considering the Copenhagen model as the basis and then upgrades it into a better 

one): 

	  

 

The authors considered a autoimmune function of the type f(x) = min(x - min(x;E1);E2 - 

min(x;E2));  M - Amount of macrophages; MA - Amount of activated macrophages; A - 

Amount of beta-cells antigenic proteins; E - Autoimmune response (E1 is the lower 

noud and E2 is the higher bound value); p - Protective pathway, metabolite. 

 

2.2 The model by Nelson et al. 

This model takes into account the dynamics of functional and dysfunctional beta- cells, 

regulatory T cells, and pathogenic T cells. It assumes that all individuals carrying 

susceptible HLA haplotypes will develop variable degrees of type 1 diabetes (T1DM) 
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related immunologic abnormalities. The results provide information about the 

concentrations and ratios of pathogenic T cells and regulatory T cells, the timing in 

which beta-cells become dysfunctional, and how certain kinetic parameters affect the 

progression to T1DM. The model is able to describe changes in the ratio of pathogenic 

T cells and regulatory T cells after the appearance of islet antibodies in the pancreas. 

The intention of this model is to study the relationship between immune cells and 

regulatory T cells by specifically looking at the ratio of pathogenic T cells and regulatory 

T cells, to determine the level of beta-cell decrease after the appearance of islet 

antibodies in the pancreas, and to make predictions about the key parameters that are 

controlling this behavior prior to the clinical onset of T1DM. The key components of this 

model, which make it unique compared to earlier works, are its ability to track the 

concentration and functionality of both the beta-cells and the regulatory T cells and to 

quantify the concentration of beta-cells with the islet marker antibodies. Both of these 

aspects are critical for finding a way to better control this disease or even reverse it. 

The equations of this model are: 

 

where 
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and H(x) is the Heaviside function;  R - Normal regulatory T cells; G - Glucose 

concentration; I - Insulin concentration; Bf - Functioning beta-cells; Bnf - Dysfunctional 

beta-cells; Tb - Pathogenic T cells; I2 - Cytokine IL-2; Rb - Defective regulatory T cells. 

 

2.3 Combined Model 

By applying the equations in the Marinkovic model to a system that distinguishes 

between functioning and non-functioning beta-cells as well as broadening the 

immunological scope of the model to incorporate expressions for T-cells as in Nelson 

the new model is created. Functional and dysfunctional beta-cells rates of change are 

influenced differently by glucose dynamics, activated macrophages and pathogenic T 

cells. 

2.3.1 Insulin dynamics 

Similarly to glucose, when considering time-scale of days to years insulin dynamics are 

relatively slow and can also be represented by a single-compartment model de-

pendent on the rates of its secretion and clearance. Given the slow time-scale of the 

model we assume a clearance rate proportional to its concentration, representing its 

continuous uptake via the kidneys, liver and peripheral insulin receptors. The secretion 

function of insulin has been demonstrated to be a sigmoidal function of glucose 

concentration. Topp et al assumed it to be proportional to beta-cell mass [1]. An 

improvement made by Nelson et al was considering secretion to be proportional to only 

functioning beta-cells. This led to the equation that we are using: 

 

 

Where k is a clearance constant, sigma is the maximal rate at which each of the 

functioning beta-cells secretes insulin, G2 /(alpha+ G2) is a Hill function describing a 

sigmoid ranging from 0 to 1, reaching half its maximum at G = alpha0,5 

2.3.2 Glucose dynamics 

It has been shown that when considering time-scale of days to years glucose dynamics 

are relatively slow and hence can be represented by a single-compartment model. This 

implies that glucose levels depend only upon its production and uptake. The rates of its 
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production and uptake depend linearly on glucose and insulin levels, which has been 

well established via the glucose clamp technique and hyperinsulemic clamp studies. All 

this resulted in a ODE first proposed by [1] that we are using, with addition of insulin 

resistance parameter. 

	  

 

Where R0 is the net rate of production at zero glucose, EG0 is the total glucose 

effectiveness at zero insulin, and SI is the total insulin sensitivity. 

2.3.3 Beta-cell mass 

Both Topp et al and Nelson et al assume that rate of formation of beta-cells is the same 

as their replication rate. Their replication rate depends non-linearly on the blood 

glucose levels. At healthy glucose levels, beta-cell replication rate increases as the 

glucose levels increase. Above a threshold of 400mg/ml, however, beta-cell replication 

rate decreases as the glucose levels increase. In the same way apoptotic death of 

beta-cells have been shown to depend non-linearly on the glucose levels, although it 

remains low above glucose concentration threshold of 110mg/ml. Another source of 

loss of functionality of beta-cells is the loss of the ability to produce insulin. This is 

assumed to be due to Th-lymphocytes (TH1 cell infiltration and their subsequent 

production of harmful cytokines and cytotoxin. An additional consideration made by 

Nelson et al, which we will keep using, is that beta-cells may became dysfunctional 

only temporarily. This is included into the equations by a linear function with parameter 

epsilon. A new thing that we will consider, that has not been considered in Nelson et al 

is the effects of the cytokines released by the activated macrophages. This will both 

increase the rates at which functioning beta-cells lose their functionality and non-

functioning beta-cells are destroyed. All this makes up for the following 2 ODEs: 
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Where d0 is the beta-cell death rate at zero glucose, r1 and r2 are beta-cell replication 

rate constants, T is the concentration of pro-inflammatory pathogenic TH1 cells, delta is 

a constant representing the rate at which TH1 cells cause functional beta-cells to lose 

their functionality, c2 corresponds to the cytokine-induced loss of functionality, d1 marks 

the elevated rate at which the non-functioning beta-cells undergo apoptosis, gammaT 

represents the rate at which they may be directly destroyed by cytotoxic CD8+ TH1 

cells and c3 describes the rate of cytokine-induced destruction. 

 

2.3.4 Macrophages 

Macrophages enter the volume in a steady inflow rate a, and may leave the volume at 

a rate c proportional to their concentration. Activated macrophages are formed when 

antigenic proteins are taken up by the pool of resting cells. This process represented 

by parameter g and is dependent on both the amount of macrophages present and the 

concentration of antigenic proteins. We assume that the rate of formation is 

proportional to both quantities. The activated macrophages exist for limited amount of 

time and then reverse back to inactive form, represented by parameter k. Activated 

macrophages release cytokines, IL-1 and TNF, that are used as signal molecules 

during immune responses and will direct other macrophages to enter the volume, 

represented by parameter b. 

 

 

2.3.5 Beta-cell antigenic proteins 

The deaths of beta-cells leads to the release of beta-cell antigenic proteins. We will 

assume that on average, upon its death, each beta-cell releases n proteins which 

brings us to the equation: 
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Where beta represents the total beta-cell population (i.e. beta f + beta nf ). 

2.3.6 Th-lymphocytes 

Th-lymphocytes are stimulated to proliferate when they recognize MHC-peptide 

complexes. We assume that their formation rate is proportional to both their 

concentration and the concentration of activated macrophages. The concentration of 

Th-lymphocites will be reduced in the absence of stimulation, represented by 

parameter d2. 

	  

	  

	  

Where h represents the Th-lymphocytes proliferation rate. 

 

2.3.7 Insulin Resistance and mTOR 

This model also incorporates 2 new equations representing insulin resistance (IR) and 

mTOR. IR is caused by mTOR, but IR needs to be able to decrease as well, that is why 

there is "-‐IR0" i.e. it should be possible to decrease as well. IR's lowest possible value 

is 0 meaning that there is no resistance in the body to insulin whatsoever. The larger 

values of IR represent bigger resistance to insulin. mTOR is activated by both insulin 

(which effect is actually decreased by IR) and glucose. 
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3 Formulation of a new Inflammatory-gut microbiota-
diabetes Model 

Considering then, a new model, which although is built upon the developments of 

previous models, can still be derived from first principles. Here we summarize the 

development of each of the rate equations used in the proposed new model. 

The complete list of model equations is: 

 

 

 

The variables are: 
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G - Glucose concentration 

I - Insulin concentration 

betaf - Functioning _-cells 

betanf - Dysfunctional beta-cells 

M - Amount of macrophages 

MA - Amount of activated macrophages 

A - Amount of _-cells antigenic proteins 

T - Pathogenic T cells 

IR - Insulin resistance 

MTOR - mTOR 
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Figure 1. A diagram summarising the development of the discussed models of diabetes and their 
relationships to one another. 

 

Figure 2. A schematic representation of the new model where the red lines represent one species 
causing a rate of change in another (i.e. an indirect effect, such as via the action of cytokines), the 
blue lines represent a rate of change of one species causing a rate of change in another (i.e. a 
direct effect) and the green line represents the influence of blood glucose and insulin dynamics, as 
in the betaIG model. The extension will include a gut microbiota – Treg interface. 
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Figure 3. Graphs demonstrating postprandial glucose dynamics. 

 

 

Figure 4. Graphs demonstrating postprandial insulin dynamics, as expected the reduction in 
glucose level is paralleled by an increase in blood insulin 

	  

3.1 Extending the model to gut microbiota 
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Up to now we have linked the diabetes with the inflammatory (mTOR) and the immune 

responses (T cells).  The immune system has multi scale properties with a wide 

diversity of effector modalities, whether molecular or cell mediated, innate or adaptive. 

There is a tight link between inflammatory and immunological responses. The 

inflammatory response is essential for the recruitment and activation of lymphocytes in 

order to respond to infection and then the promotion of wound healing and repair. 

There will always be some amount of collateral tissue damage during a response to a 

viral or parasite infection; the aim is to limit this damage to just the amount needed to 

effectively clear (or maintain chronic stasis of) the pathogen. The inflammatory 

response must be constantly constrained in intensity and duration to prevent molecular, 

cellular and organ damage. The consequences of unregulated inflammation are 

associated with many acute and chronic autoimmune diseases and comorbidities. The 

adaptive immune response is controlled (suppressed) by regulatory T (TReg) cells, 

mostly directed by the transcription factor Forkhead box P3 expressing (FOXP3+). The 

expression of FOXP3 is necessary to preserve the Treg cell program. Recent 

experiments show that both the high levels of FOXP3 and an epigenetically modified 

FOXP3 locus are associated with suppressive function in both human and mouse 

CD4+ T cells. Other transcription factors may also be involved. FOXP3+ Treg cells 

prevent potentially damaging autoimmune and protective immune responses, so the 

number of Treg cells is a crucial determinant to build an appropriate response and 

avoid autoimmune (too few Treg cells) or immune suppression (too many). The 

avoidance of failure to maintain appropriate Treg cell numbers is reached through a 

dynamic homeostatic processes, through Treg amplification and apoptosis. Although 

Treg cells seem to have overall homeostatic properties, they adapt to different tissues 

and to different immune conditions. In particular they can be distinguished between 

central and tissue polarised. Treg central cell population has circulatory characteristics 

similar to naive conventional CD4+ T cells, and polarized tissue-resident Treg cell 

populations, which are present in most organs. The high sensitivity of TRegs to a range 

of signals makes them readjust and relocate accordingly to changes in the body 

immune conditions. An important tissue is the gut microbiota. Mammals live in 

partnership with a rich commensal flora on many of the body epithelial surfaces (such 

as the skin and the upper and terminal gastrointestinal tract). This partnership is critical 

for tissue formation, metabolism and both the development and function of innate and 

adaptive resistance. The gut flora not only has a role in local tissue formation and the 

development of mucosal immunity, but also the quantitative or qualitative alteration of 
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its composition (by treatment with antibiotics or other causes of dysbiosis) affects 

systemic immunity. In mice, the balance between TH17 cells and Tregs cells in the 

intestine can be determined by the presence of a specific bacterial species, the 

segmented filamentous bacteria, which are able to associate with the mucosa of the 

distal small intestine and to specifically induce TH17 cells in the gut.  

The extended model considers Treg lymphocytes in the periphery and central body 

districts. The local and systemic homeostasis are perturbed by the gut microbiota. The 

gut is modeled by the production of butyrate. The bacteria's behavior is in turn 

modulated by circadian periodical pattern according to a birth and death model. The 

model takes into account the dynamics of functional and dysfunctional central and 

peripheric Treg cells. The intention of this model is to study the relationship between 

immune cells and regulatory T cells by specifically looking at their local and systemic 

homeostatic properties. The new model considers different cell populations, 

endogenous IL-2 and is defined as follows: T(t) is the total inflammation; N(t) is the 

concentration (cells/L) of Natural Killer (NK) cells per liter of blood; L(t) is the 

concentration (cells/L) of CD8+ T cells per liter of blood; R(t) is the concentration 

(cells/L) of CD4+ CD25+ regulatory T (Treg) cells per liter of blood; C(t) is the 

concentration (cells/L) of lymphocytes per liter of blood, not including NK cells, CD8+ T 

cells, and regulatory T (Treg) cells; I(t) is the concentration (IU/L) of IL-2 per liter of 

blood.  

The final model will have also an implementation on Prism, a Model Verification 

software, which is state of art probabilistic model checking technique [5]. (work in 

progress) 

 

4 Parameter estimation 

Parameters from complex multi factorial diseases come from both the clinical 

observation and measurements and the available genetic data. Here we describe the 

essence of parameter estimation and provides some description of a software to 

integrate clinical and bioinformatics data whose related paper has been submitted to 

BMC clinical Bioinformatics. 

Genome-wide association studies (GWAS) have provided further insight into this link 

between adipose tissue inflammation and insulin resistance. Recent eGWAS studies 
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are discovering association from the machine learning analysis of a multitude of 

experimental results. For example the analysis of 130 independent microarray 

experiments has led to the identification of key genes implicated in the pathogenesis of 

T2D. The `top candidate' was the immune-cell receptor, CD44, which is highly 

expressed in the inflammatory cells of obese adipose tissue. Further experimentations 

in the same study also demonstrated the significant correlation of CD44 serum levels 

with insulin resistance and glycemic control. This points to a potential future therapy for 

T2D could hence involve anti-CD44 antibodies. 

 

 

Figure 5. A diagram demonstrating the comorbidity association, i.e. how gene expression data 
shows how type I and type II diabetes are connected to 6 other diseases: T1D, T2D, Osteoporosis 
(OP), Kidney disease (Kdn), heart disease (Hrt) and Parkinson's disease (Prk). The thickness of the 
interconnecting lines represents the correlation (comorbidity). 5 different gene expression data 
sets were used for this analysis (GSE7158, GSE7621, GSE9006, GSE9128 and GSE 15072), all of 
which are publicly available from the online GEO database. The gene expression analysis behind 
this image has led to identify specific up- and down- regulated genes and estimate the parameters. 

	  
The tables 1 and 2 below report the parameters used in our study. Where a range has 

been given for the parameter values in tables 1,2, these can be used flexibly to tailor to 
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specific needs of a patient. Insulin production, for example, will be at the low end of the 

range for patients with fully developed diabetes, at the high end for patients without 

diabetes and mid-range for someone in the process of developing diabetes. It will also 

be dependent upon the patients size, as well as other factors, such as alcohol 

consumption. Many of these varying parameters, can hence be clinically defined and 

tailored to biologically and clinically relevant values. Others, however, such as tau, are 

simply mathematical constants, which need to be carefully evaluated, as demonstrated 

in figure below. Matlab was useful for doing this automatically, by adding a small 

variable to the list of parameters. 
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Figure 6. A graph to demonstrate the effect of the estimation of tau. 

 

4.1 Tool for Parameter estimation and Diabetes comorbidities 

We have also investigated general methodologies for parameter estimation from 

clinical and microarray data by developing a software in R that integrates clinical, gene 

ontology and molecular data, in particular transcriptomics data and outputs a 

comorbidity profiles (paper in second revision at BMC Clinical Bioinformatics). This 

software uses network regression and survival analysis data. development of statistical 

(causality inference through decision trees) and mathematical models able to identify 

trajectories deviations from healthy aging as well as disease progression. 

This software is now in development towards diabetes, inflammation and immunology. 

At a certain stage of development, through a concertation with the other WPs, it will 

input specific behavioral information and will output a comorbidity profile with the full 

comorbidity of a disease, including exercise and diet. 

The diagnosis of comorbidities, which refers to the coexistence of different acute and 

chronic diseases, is di_cult due to the modern extreme specialization of physicians. We 

envisage that software dedicated to comorbidity diagnosis could result in an effective 
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aid to the health practice. We have developed an R software comoR to compute novel 

estimators of the disease comorbidity associations. 

Starting from an initial diagnosis of diabetes, genetic and clinical data of a patient the 

software identi_es the risk of disease comorbidity. Then it provides a pipeline with 

different causal inference packages (e.g., pcalg, qtlnet etc) to predict the causal 

relationship of diseases. The input of this software is the initial diagnosis for a patient 

and the output provides evidences of disease comorbidity mapping. 

The comoR provides a number of processing options to find comorbidity of a disease. 

R bioconductor annotation data packages \org.Hs.eg.db" and \DO.db" are used for the 

annotation and mapping between gene symbol, Entrez id, OMIM (Online Mendelian 

Inheritance in Man) id and DO (Disease Ontology ) term ([9]). comoR is also dependent 

on \DOSE" bioconductor package for the mapping of DO and DOLite. A set of 

di_erential expressed gene symbols/Entrez ids/OMIM id/3 or 5 digit ICD-9-CM code of 

the disease can be used as input of ComoR functions. Flow diagram of the comoR 

software is shown in the figure 10. 
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Figure 7. Flow diagram of the comoR software. Step 1: comoR takes as input preliminary diagnosis 
data of a patient. Step 2: It preprocesses and updates required databases, performs statistical 
computation (hypergeometric and semantic similarity tests), and calculates relative risks and beta-
correlation (Pearsons correlation for binary variables) between diseases. Step 3: Comorbidity 
scores and disease network are provided as a result to the user. Step 4: Causal inference graphical 
models with the R package pcalg. Step 5: Visualization of the comorbidity map. This map could be 
extended to incorporate diet and exercise. Symbols D, g, P and DOID are used to indicate disease, 
gene, pathway and disease ontology id respectively. 
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Figure 8. Output _gure of >comorbidityPath( "00010", "Pathway" ). The kegg pathway id 00010 is 
used as input to the comorbidityPath. We show disease comorbidity for the pathway "00010" 
through the pathway disease associations. 

	  

 

Figure 9. This is a typical output generated by the implemented library. Gene set enrichment 
analysis are used for predicting the significance of gene-disease and disease-disease 
associations. The comorbidityDO function operates by using either of the following input: DO id, a 
list of gene symbols or Entrez gene ids of the patient sample. This function provides disease 
comorbidity associations and network based on the DO and DOLite. comorbidityDO requires two 
parameters id list and id type. 
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Figure 10. Output of the library comorbidityDO( "DOID:9352" , "DOID" ). The DO id of the type 2 
diabetes mellitus is DOID:9352, which is used as input to the library called comorbidityDO. We 
show disease comorbidity for the type 2 diabetes mellitus using the disease ontology. 

This library contains modules for causality, which could be used to refine medical 

diagnosis. A case study application on T2D diabetes is being prepared. This will 

provide further refinement of the model parameters particularly on combining immune, 

inflammatory, diabetes and gut microbiota comorbidities. A further extension of this 

library for testing parameters involved in diabetes will include Bayesian decision tree. 
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Figure 11. A Bayesian decision tree for the diagnosis (Y) of diabetes comorbidities (L(y)).  

5 Estimation of diabetes ODE model parameters depending 
on others comorbidities (work in progress) 

In order to estimate population and longitudinal variances in the parameters related to 

the ODE models we are devising, we thought to use methods based on networks, 

MCMC and in general machine learning techniques. Here we provide some 

explanations of the methodologies we are currently applying. 

In complex diseases such as T2D, the signature genes comprise dense protein-protein 

interaction subnetworks, enriched by extracellular matrix receptors and modulators or 

by nuclear signaling components downstream of extracellular signal-regulated kinases. 

Groups of genes are co-expressed under certain conditions or their protein products 

interact with each other to carry out a biological function. It has been shown that 

protein-protein interaction network or co-expressions can provide useful prior 

knowledge to remove statistical randomness and confounding factors from high-

dimensional data for several classification and regression models A systems medicine 

approach overrides the limitation of unifying mechanistic hypothesis and comparisons 

of single variables, reflecting instead the more realistic situation in which locally and 

globally connected communication circuits occur between constitutional, genetic, socio-

cultural, cognitive, clinical and therapeutic factors. In comorbidity maps, all such entities 

cause associations and interactions which may be clinically justified but hard to detect 

when observing the system at a coarse granularity. Through observation, testing, 

validation, the learning environment can exclude interferences and assess deviations 

and anomalies of unpredicted size. A significant reduction of complexity can be 

obtained by assembling data, which embed a variety of signals and patterns seen not 

in isolation but through ensembles, then testing models on suitably designed training 

data, and finally validating them on unseen patients. The previous process is highly 

computational, and requires a multiplexed inference methodology to bridge between 

observational, experimental and computational fields. The word multiplexing has been 

first associated with experiments, and its translation into computations has the function 

of reconstructing complex pathways through the hierarchy of their component activities. 

In our applications, multiple sources of (semi-) quantitative evidence lead to meta-

analysis in view of selected variables defining profiles based on characterized 

phenotypes. Some variables form the information bulk significant to the analysis and 

spanning the patient's disease space (a sort of minimal set satisfying model 
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consistency), while other variables provide risk information useful to assess dynamics 

(transition between profiles). In particular, stratified patient groups can be generated 

from the data assemblies based on stylized comorbidity profiles, including distinct 

phenotypes identified from the available patient cohorts. Generating processes for 

varieties of data and types of evidence determine the systems' dimensions. Clinical 

records are of course a main source, likewise other measurements useful for patient 

profiling. Time drives the inference dynamically based individual (i.e. patient-centered) 

and ensemble (i.e. patient-class based) comorbidity maps. Once patients' records are 

processed through standardized measurements and scoring systems, post-processing 

allows for the quantification of the relationships between comorbidity variables. 

Networks provide a very natural representation of knowledge underlying complex 

systems. A disease state can be considered a perturbation to networks depending on 

the value that is assigned to it. The dissection of the internal characteristics of a 

network with regard to both topological structure and dynamics, can allow the 

elucidation of the impact of the perturbation on the complex regulatory interactions 

occurring during disease pathogenesis. As disease states can vary, and perturbations 

differentiate their potential impact at network scale, the underlying time-scales can be 

very different, and often hard to integrate within a unifying frame. Networks have a 

double signature of complexity, namely emergence and latency. The phenotype 

intended as the macroscopic response of a system results from the propagation of 

information across interacting network parts or modules. The complexity that emerges 

across such coordinated modules is partially disclosed (through observable structures 

such as protein complexes), and partially latent (nested, convoluted, such as regulative 

paths). Network resilience ensures the possibility of tackling complexity by integratively 

coordinated modular functioning. In our scheme network approaches will be 

implemented with Bayesian decision tree. Decision tree learning is a popular approach 

for classification and regression in machine learning and statistics, and Bayesian 

formulations, which introduce a prior distribution over decision trees, and formulate 

learning as posterior inference given data- have been shown to produce competitive 

performance. Unlike classic decision tree learning algorithms like ID3, C4.5 and CART, 

which work in a top-down manner, existing Bayesian algorithms produce an 

approximation to the posterior distribution by evolving a complete tree (or collection 

thereof) iteratively via local Monte Carlo modifications to the structure of the tree, e.g., 

using Markov chain Monte Carlo (MCMC). In classical decision tree learning, a 

decision tree (or collection thereof) is learned in a greedy, top-down manner from the 
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examples. Examples of classical approaches that learn single trees include ID3, C4.5 

and CART, while methods that learn combinations of decisions trees include boosted 

decision trees, Random Forests, and many others. A decision tree can be represented 

more compactly as an influence diagram, focusing attention on the issues and 

relationships between events. Bayesian decision tree methods cast the problem of 

decision tree learning into the framework of Bayesian inference (see figure 11). In 

particular, Bayesian approaches start by placing a prior distribution on the decision tree 

itself. To complete the specification of the model, it is common to associate each leaf 

node with a parameter indexing a family of likelihoods, e.g., the means of Gaussians or 

Bernoullis. The labels are then assumed to be conditionally independent draws from 

their respective likelihoods. The Bayesian approach has a number of useful properties: 

e.g., the posterior distribution on the decision tree can be interpreted as reflecting 

residual uncertainty and can be used to produce point and interval estimates. On the 

other hand, exact posterior computation is typically infeasible and so existing 

approaches use approximate methods such as MCMC in the batch setting. The work in 

progress is making use of the Comor software library (Figure 10) and the decision tree 

(Figure 11) for inferring how the different parameters used in the models are changed 

by the presence of gut microbiota, immune systems and inflammatory comorbidities. 

6 Phenotype (multi) omics gene ontology (POGO) 

Exploring associations among diseases at the molecular and clinical levels could 

greatly facilitate our understanding of pathogenesis, and eventually lead to better 

diagnosis and treatment [6.1]. Many researchers have studied the relationships 

between disease and biological variations such as single nucleotide polymorphisms 

(SNPs), copy number variations (CNVs), sequence repeats and genetic rearrangement 

[6.2]. For an instance, several CNVs were significantly associated with the risk of 

T2DM in a Korean population [6.2]. Gene Ontology (GO) is also helpful to promote the 

investigation of diseases and disease risk factors [6.3].  Moreover, phenotype and 

environmental factors should also be considered in order to realize disease association 

[6.4]. Therefore, development of methods and software tools integrating genetic and 

clinical data will assist clinical decision making and represent a key step for translation 

medicine. 

	  
We have developed POGO,	  an R package that implements different statistical approach 

for the prediction of disease comorbidity using divers set of data (CNVs, GO, SNPs, 
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miRNA, HPO and environmental). Starting from an initial diagnosis, genetic and clinical 

data of a patient the software identifies the risk of disease comorbidity. It provides 

different comorbidity assessment; integration of genetic information with the POGO 

output data could be used to infer causal relationships among diseases. The input of 

this software is the initial diagnosis for a patient and the output provides evidences of 

disease comorbidity mapping. POGO	   computes disease-disease association by 

adopting semantic similarity measures and hypergeometric test [6.5]. Semantic values 

of GO term or diseases were calculated based on the DAG of corresponding diseases.  

Gene set enrichment analysis are used for predicting the significance of 

genes/CNVs/SNPs--disease and disease--disease associations. Neighbourhood based 

benchmark method is used to identify the comorbidity pattern among diseases [6.6].  

POGO also build the associated network as a bipartite graph; each common neighbour 

node is selected based on the Jaccard coefficient method [6]. It works as a pipeline 

with different causal inference packages (e.g. pcalg, qtlnet etc) to predict the causal 

relationship of diseases. It also provides a pipeline with network regression and 

survival analysis tools (e.g. Net-Cox, rbsurv etc) to predict more accurate survival 

probability of patients.   

 
In the future, clinicians will have to consider genetic/genomic implications to patient 

care throughout their omics and clinical workflow. Our software will help to gain a better 

understanding of the complex pathogenesis of disease risk phenotypes and the 

heterogeneity of disease comorbidity. The identified disease patterns can then be 

further investigated with regards to their diagnostic/prognostic utility or help in the 

design of novel personalised therapeutic targets. The functions of the POGO offer 

flexibility for diagnostic applications to predict disease comorbidities, and can be easily 

integrated to high–throughput and clinical data analysis pipelines for translation 

medicine. 
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7 Conclusions and perspectives 

Up to now, a model of glucose, insulin and beta-cell dynamics (from 2000) [1], which 

focused on T2D, was linked up with a model of T-lymphocyte and macrophage 

populations within the context of T1D (from 1999) [2]. This was achieved using the 

considerations of current biological theories and recent papers, which have developed 

upon these foundation models, such as [3] and [4]. The fragility of these models, 

including this new one, is held in the accuracy of the parameter estimation. The model 

is now been extended to gut microbiota. In the next months we will focus more on 

linking gut microbiota compartments with the pancreatic processes and on using 

molecular data to estimate the validity and variances of the parameters. Future work 

may involve the application of delay differential equations (dde's), through the use of 

Matlab's dde23 solver, for example. This could enhance the model to better represent 

biological reality since type II diabetes and their various clinical symptoms present 

across a broad range of time-scales. It would also allow for finer tuning of parameters 

at these different timescales, and relates this new model back towards the original IG 

model, which was purposefully divided into fast and slow subsystems. An additional 

consideration is the modality of that lymphocyte infiltration into the pancreatic islet. It is 

possible that this effect not only causes chemical disruption via cytokines, but may also 

cause mechanical disruption of the tissue, further altering the signaling. Hence this 

could potentially be incorporated as a functional intercellular signaling modification 

acting upon extra cytokine or receptor variables. The links between metabolism and 

immunology, which are highlighted by this model, also imply that perhaps the best new 
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therapeutic strategies for diabetes may lie in immunological targets. This theory is 

supported by recent studies into metformin. 

The co-morbidity of diabetes with other diseases also suggests that more holistic 

models connecting themes from both metabolism and immunology will be crucial to our 

mechanistic understanding of the biochemical processes involved. This new combined 

model may hence act as a `stepping stone' towards future models that are likely to be 

process-oriented system models, in which everything is interconnected. 

Such complex models are already in the process of being developed in the form of 

`virtual patients'. Parameterizing and calibrating such extensive interaction networks, 

however, is naturally slow. The theoretical and practical aspects of diabetic 

comorbidities have been discussed in a recent review paper [7]. They have been also 

discussed in the BIO4MED conference at Gulbenkian Institute coorganised by Pedro 

Fernandes and Pietro Lio’ in August 2013 and in a talk given at Dagstuhl workshop on 

Precision medicine in August 2013.   
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