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Executive Summary 
 

In this deliverable we describe the work done in task Task 
2.4 Validation and refinement of the model in the overall 
workflow. 

Keywords Metabolic flexibility; Insulin Resistance; Gut Microbiota 
composition analysis; Ecological modeling 
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1 Deliverable Description 

In this document are described the hypotheses, the theoretical assumptions, the   

methodologies and the results of the Task 2.4: “Report on the integration of clinical 

data model to the overall workflow”. The main focus will be on the integration between 

clinical data analysis and modelling activities. We will describe the main steps that we 

have done for the creation of such models and for their exploitation on clinical data. 

The main goal is to develop a model for the metabolic flexibility switch in Health and 

Type 2 Diabetes. This will involve a skeletal muscle cell modelling and also a 

dynamical modelling of Gut Microbiota (GM), in order to characterize their response to 

external perturbations such as dietary changes, age or health state.  

The metabolic flexibility model will be computed starting from the biochemical 

background described at the beginning of this document. Clinical datasets on gene 

expression of Healthy, Insulin Resistant and Type 2 Diabetes patients from the GEO 

database will be analyzed and exploited to assess which key points in our  cell model 

could produce the metabolic flexibility impairment. Pathway analysis will also enable us 

to assess the effects of Insulin Resistance and Type 2 Diabetes on the gene 

expression of liver and adipose tissue.  

For what concern the GM modelling, we will propose a new model based on a 2D 

chemostat, and whose stationary distribution will be obtain by a CME approach through 

numerical simulations in Python and, where possible, also analytical computations. 

Clinical 16S rRNA sequencing data from Claesson et al will be analysed and fitted with 

our model. 

Finally, we will propose a table summarizing the main effects of diet on bacteria and 

the main products of such bacteria that could affect the host metabolic and immune 

systems, including its metabolic flexibility. 

 

2 Deliverable Results  

2.1 METABOLIC FLEXIBILITY AND INSULIN RESISTANCE 

Metabolic flexibility is the capacity to switch from predominantly lipid oxidation and high 

rates of fatty acid uptake during fasting conditions to the suppression of lipid oxidation 

and increased glucose uptake, oxidation, and storage under insulin-stimulated 
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conditions or after a meal [1][2]. 

Skeletal muscle is the most important organ concerning the uptake and oxidation of 

fatty acids. [2] 

High glucose concentrations have potential toxic effects, and skeletal muscle will 

prevent toxic glucose concentrations by increasing glucose uptake and oxidation at the 

cost of fatty acid uptake and oxidation. Also high FFA levels are toxic. However, after a 

meal, the body has – in contrast to glucose – the option to shuttle large amounts of 

excess FFA to the adipose tissue. [2] 

 

2.1.1 Postprandial phase: 

The postprandial phase is characterized by high blood concentration of nutrients 

(glucose and fatty acids). Pancreatic beta cells respond to this high glucose 

concentration releasing insulin in the bloodstream. 

In myocytes, insulin receptor binds insulin and undergoes autophosphorylation on its 

carboxyl-terminal Tyr residues activating insulin signalling: insulin receptor 

phosphorylates IRS-1 on its Tyr residues; IRS-1, phosphorylated, activates PI-3K by 

binding to its SH2 domain; PI-3K converts PIP2 to PIP3; Akt/PKB bound to PIP3 is 

phosphorylated and activated by PDK1; PKB phosphorilates stimulates AS160 

phosphorylation and in conclusion insulin-stimulated phosphorylation of AS160 (IR → 

IRS-1-PI3K → Akt2 → AS160) releases the inhibition on vesicular GLUT4 movement to 

the plasma membrane, as phosphorylated AS160 can no longer maintain rab proteins 

in a GDP-bound state. [3] 

Similarly to insulin-induced GLUT4 translocation, the insulin-induced translocation of 

fatty acid transporters (CD36 and FATP1) requires the activation of the PI3K-Akt2 

signaling pathway even if the pathway for GLUT4 and the one for fatty acid 

transporters can diverge at some point. [3] 

Glucose is transported inside the cell through GLUT4 and enter the glycolysis pathway 

in which it is converted to pyruvate, that enters the TCA cycle in the mitochondria.  

Fatty acids instead are converted by acyl-CoA synthetase to acyl-CoA, that enters the 

mitochondria through the carnitine shuttle and, converted to acetyl-CoA by b-oxidation, 

enters the TCA cycle. 

Through the TCA cycle, glucose and fatty acid fluxes increase intra-mitochondrial 
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citrate, that through the citrate shuttle is transferred in the cytosol and is converted to 

acetyl-CoA. 

Cytosolic citrate is able to stimulate ACC2 (acetyl-CoA carboxylase-2), that is the first 

enzyme of lipogenesis, that converts acetyl-CoA to malonyl-CoA (fat storage).  

Malonyl-CoA is a potent allosteric inhibitor of carnitine-palmitoyl transferase-1 (CPT-1) 

(carnitine shuttle) and then blocks mitochondrial FA-CoA uptake and therefore limit b-

oxidation, that is it inhibits FA oxidation. [2] 

Meanwhile also insulin signalling (PIP3) promotes ACC2 activation through a protein 

phosphatase insulin dependent.[6] 

 

2.1.2 Fasting phase: 

During the fasting phase plasma glucose and insulin drop down, while plasma 

glucagon and FFA (coming from adipocytes) rise. 

Consequently there will be less GLUT4 e CD36 in cells plasmatic membrane (since 

their insulin dependent positioning is reversible) and a lesser glucose and FFA uptake. 

The energy demand will cause a drop in citrate levels, and consequently in cytosolic 

acetyl-coa levels. Then ACC2 won't be activated anymore, niether by citrate nor by 

insulin, but it will be instead phosphorylated and so inactivated by glucagon through 

PKA. 

There will be a subsequent drop in malonyl-CoA levels (no fat storage), disinhibition of 

CPT-1 activity, increased mitochondrial fatty acyl-CoA uptake and an increase in fatty 

acid oxidative disposal. [2]  

 

2.2 INSULIN RESISTANCE 

Overfeeding causes an excess in plasma glucose and lipids concentration. 

The excess of plasma glucose activates some processes that are strong sources of 

oxidative stress, like: glucose autooxidation, overproduction of ROS by mitochondria, 

non-enzymatic glycation, and the polyol pathway . 

ROS may affect insulin signalling. This may occur through several mechanisms: ROS 

may induce serine phosphorylation of insulin receptor substrate, decreasing tyrosine 

phosphorylation thereby interfering with insulin signaling; similarly, ROS have been 
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shown to partially mediate the effect of Angiotensin II inhibition of insulin signalling. 

Methylglyoxal, a biologically active AGE precursor formed under conditions of 

hyperglycemia, inhibits phosphorylation of insulin receptor substrate and activation of 

the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) pathway. [4] 

Hyperglycemia-induced oxidative stress leads to the generation of intracellular signals 

that stimulate inflammation and cell death. They include protein kinase C (PKC), c-Jun-

N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) and they 

inhibit insulin signalling .[4][5] 

Inflammation in turn activates FOXOs mono-ubiquitinating them. 

Hyperglycemia-induced FOXO plays an important role in the induction of 

proinflammatory cytokines and may be involved in a forward amplification loop.  

Enhanced activation of FOXO1 affects the expression mitochondrial fusion and fission 

thereby affecting mitochondrial biogenesis and compromising their role against ROS 

and mitochondrial oxidation.[4] 

Excess lipid accretion and/or lower triglyceride turnover can induce lipotoxicity, as 

reflected by the cellular accumulation of long chain fatty acyl-CoA (FA-CoA), 

diacylglycerol (DAG), triacylglycerol (IMTG) and ceramide. These lipid species 

ultimately impair insulin signaling through different mechanisms, either increased 

serine phosphorylation of the insulin receptor and insulin receptor substrate 1 and/or 

reduced serine phosphorylation of PKB/Akt . [1][2] 

 

2.3 METABOLIC INFLEXIBILITY 

2.3.1 Postprandial phase 

Due to insulin resistance, that is an impaired insulin signalling, GLUT4 and CD36 won't 

be translocated in the plasmatic membrane and there will be a consequently lesser 

provision of glucose and FA inside the cell. It means a lesser citrate level coming from 

the TCA cycle. There will not be the ACC2 activation by insulin signalling and citrate 

and so ACC2 remains inactivated and FA storage will be unpaired. Meanwhile there 

won't be malonyl-CoA inhibition of carnitine shuttle, that is of FA oxidation.  

Consequently there will be less glycolysis (due to the low glucose level inside the cell) 

and FA oxidation won't stop. 

 



FP7- 600803    [D2.4 – v2.0]    Page 9 of 37 

  
 

2.3.2 Fasting phase 

During the fasting phase, due to insulin resistance, plasma glucose and FFA levels will 

remain high. So there won't be a relevant drop in mitochondrial citrate level and ACC2 

won't be inactivated. Hyperglycemia will also impair the rising of plasma glucagon 

levels and there won't be even this factor to inactivate ACC2. 

Fat lipogenesis and storage will keep on, as well as its inhibition of the carnitine shuttle 

that means of FA oxidation. 

 
2.4 GENE EXPRESSION AND PATHWAY ANALYSIS 

We studied the differences in gene expression between Healthy and Insulin Resistant  

or Type 2 Diabetes subjects in three tissues: skeletal muscle, adipose tissue and liver.  

Since skeletal muscle is the most important organ concerning the uptake and oxidation 

of fatty acids, i.e. involved in metabolic flexibility, for such tissue we also assessed the 

effect of the impairment of the cell metabolic flexibility due to insulin resistance.  

We identified 5 datasets from the GEO database: 

- GSE 13070 [7] 

- GSE 18732 [8] 

- GSE 15773 [9] 

- GSE 20950 [9] 

- GSE 23343 [10] 

In all five cases, data were generated with Affymetrix Human Genome U133 Plus 2.0. 

These arrays contain > 54000 probe sets, composed of 25 nucleotides each, 

corresponding to about 38500 genes overall. 

The following table summarizes the number of samples of each type along the 5 

datasets. 

 MUSCLE NT MUSCLE T ADIPOSE TISSUE LIVER 

HEALTHY 15 (GSE13070) 
47 (GSE18732) 

16 (GSE13070) 6 (GSE13070) 
5 (GSE15773) 
10 (GSE20950) 

7 (GSE23343) 

INSULIN 
RESISTANT 

46 (GSE13070) 46 (GSE13070) 25 (GSE13070) 
4 (GSE15773) 
9 (GSE20950) 

X 

TYPE 2 
DIABETES  

45 (GSE18732) X X 10 (GSE23343) 
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NT = Not Treated (fasting phase) 

T = Treated with a 5-h hyperinsulinemic (80 mU m-2 min-1) euglycemic clamp 

(simulates the postprandial phase) 

Starting from the .CEL files, we extracted the data through the software Affymetrix 

Power Tool, with the Robust Multi-array Avarage (RMA) method.  

We performed such reworking because data from different works had been processed 

in different ways. 

In order to verify the datasets equivalence, we computed a Principal Component 

Analysis (PCA) considering the healthy not treated muscles samples form the 2 

datasets GSE13070 and GSE18732. 

As shown in Figure 1, the 2 datasets clearly separate, meaning that we can not 

consider their samples as equivalent. Thus, we chose to analyze the datasets 

separately. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. PCA considering the healthy not treated muscle 
samples from  GSE13070 (blue) and GSE18732 (red). 

 
In order to compare gene expression in healthy, insulin resistance and type 2 diabetes, 

we performed an ANalysis Of VAriance (ANOVA). 

In order to perform the pathway analysis, we imported the KEGG classification of 

genes and pathways through the library keggrest. 

We performed a Fisher's test to identify the significantly different pathways among 

those in which the significantly different genes are involved, through the library 
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multilinear.  

 
 
2.5 Healthy vs Insulin Resistant 

2.5.1 Muscle (GSE13070) 

In order to assess which genes and pathways are significantly different in skeletal 

muscle cells between Healthy and Insulin resistant subjects, we considered data from 

GSE 13070. We computed the ANOVA considering fasting subjects, so as not to 

include the feeding variability. This comparison found that 3926 over 54675 probes had 

a significantly different expression in Healthy versus Insulin Resistant samples (p-value 

< 0.05). These corresponded to  2504 over  17526 genes according to the KEGG 

genes classification. 

Among the 190 pathways that held these genes, pathway analysis identified 39 

pathways that significantly changed between IR and Healthy samples (p-value < 0.05), 

that, excluding diseases associated pathways, are: 
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2.5.2 Muscle –  Metabolic flexibility (GSE13070) 

In this part of the analysis we wanted to find out which genes and pathways 

significantly changed in the fasting versus postprandial comparison, because of the 

health state. In this way we assessed the genes and pathways involved in the 

metabolic flexibility impairment due to insulin resistance. 

We computed a 2 way ANOVA  and focused on the interaction term, which indeed 

describes the dependence of the differences between the fasting and postprandial 

phase on the health state. 

This comparison found 663 over 54675 significant probes (p-value < 0.05), that 

corresponded to  343  over  17526 genes according to the KEGG genes classification. 

PATHWAY P-VALUE
Proximal tubule bicarbonate reclamation 0,000001
Glyoxylate and dicarboxylate metabolism 0,00007
Metabolic pathways 0,00013
Valine, leucine and isoleucine degradation 0,00017
Arginine and proline metabolism 0,00085
Purine metabolism 0,00104
Carbon metabolism 0,00160
Alanine, aspartate and glutamate metabolism 0,00168
Long-term potentiation 0,00279
Morphine addiction 0,00433
Long-term depression 0,00529
D-Glutamine and D-glutamate metabolism 0,00586
GABAergic synapse 0,00641
Porphyrin and chlorophyll metabolism 0,00648
Oxidative phosphorylation 0,00776
Leukocyte transendothelial migration 0,00871
Retrograde endocannabinoid signaling 0,00970
Ribosome 0,01163
cGMP-PKG signaling pathway 0,01170
Rap1 signaling pathway 0,01170
Aminoacyl-tRNA biosynthesis 0,01519
Signaling pathways regulating pluripotency of stem cells 0,01688
Ras signaling pathway 0,02278
Vascular smooth muscle contraction 0,02424
Platelet activation 0,02666
Progesterone-mediated oocyte maturation 0,02990
Pyruvate metabolism 0,03043
Salivary secretion 0,03188
Synthesis and degradation of ketone bodies 0,03489
Dopaminergic synapse 0,03736
Proteoglycans in cancer 0,04025
Gap junction 0,04225
cAMP signaling pathway 0,04357
Adrenergic signaling in cardiomyocytes 0,04430
One carbon pool by folate 0,04846
Bile secretion 0,05181
Insulin signaling pathway 0,05205
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Among the 135 pathways that held these genes, pathway analysis identified 5 

significant pathways (p-value < 0.05): 

 

 

2.5.3 1.3 Adipose tissue (GSE13070) 

We computed a 1 way ANOVA for adipose tissue samples from GSE 13070, 

comparing Healthy versus Insulin Resistant subjects. This comparison found that 

11327 over 54675 probes had a significantly different expression in the two groups (p-

value < 0.05). These corresponded to 6407 over  17526 genes according to the KEGG 

genes classification. 

The pathway analysis identified the following 95 over 238 pathways that significantly 

changed between Healthy and IR samples (p-value < 0.05), among which: 

 
 
 
 

PATHWAY P-VALUE
Circadian rhythm 0,00008
Complement and coagulation cascades 0,0048
MicroRNAs in cancer 0,0333
Aldosterone-regulated sodium reabsorption 0,0444
Carbohydrate digestion and absorption 0,0444
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PATHWAY P-VALUE
Lysosome 0,000000018
Metabolic pathways 0,000000056
Fatty acid metabolism 0,00000026
Valine, leucine and isoleucine degradation 0,00000031
Fc epsilon RI signaling pathway 0,0000013
Platelet activation 0,000021
Oxidative phosphorylation 0,00012
Leukocyte transendothelial migration 0,00018
Fatty acid degradation 0,00019
Fc gamma R-mediated phagocytosis 0,00019
Citrate cycle (TCA cycle) 0,00030
Mineral absorption 0,00033
HIF-1 signaling pathway 0,00036
Pathways in cancer 0,00054
AMPK signaling pathway 0,00073
Fatty acid elongation 0,00084
Apoptosis 0,00113
Calcium signaling pathway 0,00152
Other glycan degradation 0,00154
Glycosaminoglycan degradation 0,00178
Tight junction 0,00192
Phagosome 0,00192
B cell receptor signaling pathway 0,00195
VEGF signaling pathway 0,00203
Adipocytokine signaling pathway 0,00211
Inflammatory mediator regulation of TRP channels 0,00261
T cell receptor signaling pathway 0,00310
Insulin signaling pathway 0,00346
Focal adhesion 0,00357
Chagas disease (American trypanosomiasis) 0,00369
Biosynthesis of unsaturated fatty acids 0,00375
Toll-like receptor signaling pathway 0,00402
Regulation of actin cytoskeleton 0,00411
Glutamatergic synapse 0,00417
Propanoate metabolism 0,00433
Type II diabetes mellitus 0,00471
PPAR signaling pathway 0,00515
PI3K-Akt signaling pathway 0,00591
Natural killer cell mediated cytotoxicity 0,00632
Oxytocin signaling pathway 0,00703
MAPK signaling pathway 0,00718
Endocrine and other factor-regulated calcium reabsorption 0,00721
FoxO signaling pathway 0,00850
Carbon metabolism 0,00916
Pyruvate metabolism 0,00962
p53 signaling pathway 0,01098
Axon guidance 0,01563
Leishmaniasis 0,01639
Rap1 signaling pathway 0,01695
Thyroid hormone signaling pathway 0,01773
NF-kappa B signaling pathway 0,01857
Amino sugar and nucleotide sugar metabolism 0,02012
Melanogenesis 0,02476
Morphine addiction 0,02553
Glyoxylate and dicarboxylate metabolism 0,02589
Notch signaling pathway 0,02645
Amoebiasis 0,02722
GnRH signaling pathway 0,03048
Fatty acid biosynthesis 0,03085
Phosphatidylinositol signaling system 0,03423
TGF-beta signaling pathway 0,03423
Gastric acid secretion 0,03487
Hematopoietic cell lineage 0,03642
Tryptophan metabolism 0,03771
Neurotrophin signaling pathway 0,03879
Inositol phosphate metabolism 0,04219
Prolactin signaling pathway 0,04490
Dopaminergic synapse 0,04858
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2.6 Healthy vs Type 2 Diabetes 

2.6.1 Muscle (GSE18732) 

We exploited data from GSE 18732 in order to assess the gene expression differences 

between Healthy and Type 2 Diabetes subjects in skeletal muscle cells. The ANOVA 

for this comparison found that 3546  over 54675 probes had a significantly different 

expression in the two groups (p-value < 0.05). These corresponded to 2168  over  

17526 genes according to the KEGG genes classification. 

The pathway analysis identified the following 28 over 171 pathways that significantly 

changed between T2D and healthy samples, among which: 

 

2.6.2 Liver (GSE23343) 

The ANOVA for this comparison found that 5761 over 54675 probes had a significantly 

different expression in Healthy and Type 2 Diabetes samples (p-value < 0.05). These 

corresponded to  3804  over  17526 genes according to the KEGG genes classification. 

In particular TCF7 resulted significantly different (p-value = 0.047), being, on avarage, 

more expressed in Healthy than T2D. 

Pathway analysis identified 49 over 192 pathways that significantly changed between 

T2D and Healthy samples (p-value < 0.05). 

 
 
 
 

PATHWAY P-VALUE
Spliceosome 0,000006
Ubiquitin mediated proteolysis 0,00066
Regulation of actin cytoskeleton 0,00999
Protein processing in endoplasmic reticulum 0,01495
Axon guidance 0,01742
Glycosaminoglycan degradation 0,02810
MAPK signaling pathway 0,03314
Adherens junction 0,03362
B cell receptor signaling pathway 0,03892
AMPK signaling pathway 0,04092
FoxO signaling pathway 0,04292
Wnt signaling pathway 0,04474
Prolactin signaling pathway 0,04483
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2.7 METABOLIC FLEXIBILITY PATHWAY 

We computed a metabolic flexibility pathway, summarizing the main involved steps 

described previously.  

The principal KEGG implicated pathways: 

hsa04930 - Type II diabetes mellitus 
hsa04910 - Insulin signaling pathway 
hsa00010 - Glycolysis / Gluconeogenesis 
hsa00620 - Pyruvate metabolism 
hsa00020 - Citrate cycle (TCA cycle) 
hsa00061 - Fatty acid biosynthesis 
hsa00062 - Fatty acid elongation 
hsa00071 - Fatty acid metabolism 
hsa03320 - PPAR signaling pathway 
hsa00190 - Oxidative phosphorylation 

PATHWAY P-VALUE
Protein processing in endoplasmic reticulum 0,00003
Tight junction 0,00009
Ubiquitin mediated proteolysis 0,00011
Ribosome 0,00026
Focal adhesion 0,00029
Hippo signaling pathway 0,00062
Ras signaling pathway 0,00062
Nucleotide excision repair 0,00105
One carbon pool by folate 0,00138
Glycosylphosphatidylinositol(GPI)-anchor biosynthesis 0,00183
Regulation of actin cytoskeleton 0,00194
RNA transport 0,00237
Platelet activation 0,00360
cGMP-PKG signaling pathway 0,00390
Circadian rhythm 0,00515
MAPK signaling pathway 0,00542
ErbB signaling pathway 0,00564
Spliceosome 0,00645
Glioma 0,00689
Non-alcoholic fatty liver disease (NAFLD) 0,00718
Oxytocin signaling pathway 0,00760
Metabolic pathways 0,01046
Endocytosis 0,01511
Adherens junction 0,01581
mRNA surveillance pathway 0,01597
TGF-beta signaling pathway 0,01831
Vascular smooth muscle contraction 0,02241
Protein export 0,02251
Oxidative phosphorylation 0,02349
Thyroid hormone signaling pathway 0,02672
Leukocyte transendothelial migration 0,02978
Serotonergic synapse 0,03392
NOD-like receptor signaling pathway 0,03938
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hsa04920 - Adipocytokine signaling pathway 
hsa04151 - PI3K-Akt signaling pathway 
hsa04068 - FoxO signaling pathway 
 
We propose a simple and a more complete version of the metabolic flexibility pathway.  

The blue and red borders represent the two metabolic pathways among which the cell 

switches between the fasting (blue) and postprandial (red) phase. This is the switching 

that results impaired in insulin resistance and Type 2 Diabetes. 

 
In the simple version we identify 3 core cellular steps that could summarize the whole 

process: Fatty Acids intake, Glucose intake and the Carnitine shuttle, through which FA 

enter the TCA cycle in the mitochondrion. 

We plotted the results of the 2 way ANOVA used to determine metabolic flexibility 

differences between Healthy and Insulin Resistant in skeletal muscle on the complete 

pathway. 

Filled cells represent significant genes, i.e. genes that have a different expression 

between the fasting and postprandial phase, that can be imputed to the different health 

state.  

We considered the absolute difference of the average value of gene expression 

between the fasting and postprandial phase.  

Cyan filled cells refer to genes that have a lower average difference in Insulin Resistant 

subjects than in Healthy, while pink filled cells correspond to genes for whom such 

difference is higher in IR. 
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An interesting result is the lower variation of PIK3 in IR between the fasting and 

postprandial phase. This is a key gene of the insulin signaling pathway, and the result 

thus agrees with an impaired metabolic flexibility in IR subjects. 

 

2.8 Ecological modeling of Gut Microbiota 

2.8.1 PREPROCESSING 

We analysed the data from [11], available on MG-RAST under the Project ID 154. 

These include 164 elderly subjects, non-antibiotic-treated, for whom we also had 

dietary information, and stratified by community residence setting: (1) community-

dwelling, n=81; (2) attending an out-patient day hospital, n=20; (3) in short- term (<6 

weeks) rehabilitation hospital care, n=12; (4) in long-term residential care (long-stay), 

n=51. The mean subject age was 78 (±8 s.d.) years, with a range of 64 to 102 years, 

and all were of Caucasian (Irish) ethnicity. The study also includes 13 young adults 

with a mean age of 36 (66 s.d.) years. For each subject, sequence reads from 16S 

rRNA gene V4 amplicons were generated with 454 Genome Sequencer FLX Titanium 

platform. These are suitable data for our analysis because starting from 16S rRNA 

gene (V4) data we can build OTUs, i.e. assess phylogenetic relationships between 

species.  

Starting from the 16S rRNA sequences, we built the RSA distribution of the GUT 

ecological system computing the so called Operational Taxonomic Units (OTUs) 

through a clustering procedure based on sequence similarity. In particular the RSA was 

obtained representing the OTUs abundances in the form of Preston plot. This is the 

plot of how many species (y-axes) have a certain number of individuals (x-axis), with 

the x-axis transformed in logarithm to base 2 in order to compress the information of 

the otherwise very long tail of the distribution.  

Before deepening the methodology, let us underline that in order to give an ecological 

description of the microbiota, it is highly recommended to base the analysis on de novo 

OTUs, rather then on some taxonomic classification. In fact, although phylotype-based 

methods are appealing approaches, since they enable investigators to place labels 

onto sequences, indicating their relationships to previously cultured and characterized 
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microbes, they are human-made methods and there are myriad examples of organisms 

that belong to the same species that have different phenotypes and organisms with the 

same phenotype belonging to different taxonomic lineages, without talking about 

unclassified organisms or about the fact that there are at least three different curated 

taxonomy outlines that contain significant conflicts with each other [12]. In order to 

estimate evolutionary relationships of organisms, genes, species, etc. the tool to be 

used is phylogenetic analysis, that is the analysis of OTUs [13]. Basing our analysis on 

OTUs, we will not be able to give names to species, but we will have the great 

advantage of avoiding the loss of information due to a taxonomic classification.  

In order to build OTUs, we clustered the 16S rRNA sequences with UCLUST [14]. 

Sequences were previously sorted by quality, since UCLUST is sequence order 

sensitive and needs the highest quality sequences at the beginning of the input file. We 

applied the UCLUST algorithm using four different similarity thresholds: 90%, 93%, 

95% and 97%. In this way, we obtained clusters (OTUs), that can be thought as groups 

of bacteria of the same taxon at a particular phylogenetic level [12]. Here, the similarity 

threshold is what defines the phylogenetic level at which we compute the RSA, the 

scale level at which we study the ecosystem.  

Starting from UCLUST results, we estimated the OTUs abundances, that will 

correspond to species abundances. We then filtered for singletons (OTUs with just one 

sequence inside) in order to minimize the inclusion of sequencing artefacts [15]. Since 

the absence of singletons violates some fundamental assumptions of species richness 

analysis, we randomly removed one sequence per OTU, causing all OTUs with 

originally two reads (doubletons) to become singletons, those with three reads to 

become doubletons, and so on. The effect of an even more conservative interpretation 

of 454 reads on species richness analysis was evaluated by consecutively omitting 

doubletons and tripletons from the initial data sets. Thus, we computed the RSA in the 

form of Preston plot for all four data sets: singletons retained, singletons excluded, 

doubletons excluded and tripletons excluded. The greatest difference appears between 

retaining or removing singletons from the data set (see Fig.1). Thus, considering the 

less restrictive case, we chose to exclude just singletons, and to subtract 1 from all the 

other OTUs abundances. 
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Figure 1. Preston plot of the RSA distribution of one GM sample at 97% similarity thresholds for the 
four data sets: singletons retained, singletons excluded, doubletons excluded and tripletons 
excluded. 

 

2.8.2 MODELING: PURELY NEUTRAL MODEL 

The GM RSA was modelled according to the neutral theory of ecosystems proposed by 

[16] and [17]. The dynamics of the population of a single species are governed by 

generalized birth and death events, that include speciation, immigration and 

emigration. If we neglect inter-species interactions after the community has reached a 

steady state, the number of individuals n of a given species evolves according to  

 
(1) 

where bn and dn denote the per-capita density-independent birth and death rates, with 

b−1 = 0 and d0 = 0, while the presence of the constant influx S produce a density 

dependence effect, which causes a rare species advantage and which can arise due to 

effective rates of immigration/emmigration/speciation/extinction in a local community, 

so as due to intraspecific interactions. Here, we do not incorporate speciation explicitly 
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into the model because it does not affect the functional form of the results (it can be 

incorporated into the immigration term at n = 0 by adding a constant). 

Let us observe that, since we make the neutral equivalence of species assumption, this 

equation, that has been written for a single species, actually holds for the whole 

ecosystem, since the per-capita birth and death rates are the same for all the species. 

In order to take into account stochasticity, that is fluctuations, we can write the 

corresponding Chemical Master Equation  

 
(2) 

where S has been included in the birth term, setting  

 
(3) 

that is  

 (4) 

while the death rate simply results  

 
(5) 

The stationary solution is easily obtained with the linear expansion method, in which 

the birth-death process null flux condition is exploited:  

 
(6) 

Here we consider n > 0 and we can deduce P0 from the normalization condition ∑ 

n≥0Pn = 1. 

 

The stationary solution results a Negative Binomial distribution  



FP7- 600803    [D2.4 – v2.0]    Page 23 of 37 

 
 

 

(7) 

The interesting thing about this distribution is that it is able to resemble both a Log-

Series and a Log-Normal, the two RSA distribution widely observed and discussed in 

ecology [18]. 

2.8.3 MODELING: MODIFIED CHEMOSTAT 2D MODEL 

A first insight on GM Preston plots showed that the RSA for this ecosystem is actually 

bimodal. This implied the need for a relaxation of the neutrality condition in favour of an 

hybrid niche-neutral model which allowed at least 2 niches, meaning 2 groups of 

bacteria with different dynamics parameters, but inside which neutrality still holds. 

A similar solution had been proposed for the coral-reefs ecosystem in [19]. Here we 

propose a new model based on the chemostat, that is able to explain such situation 

with a competition for the same nutrient between two species, and that seems 

particularly suitable for bacteria in the Gut. 

A chemostat is a bioreactor that consists of a vessel filled with culture medium and, in 

our case, bacteria. In the chemostat, we also supply a constant influx of medium 

(nutrient) and the vessel owns an outlet, so that nutrients and bacteria in the container 

can flow out. 

This system can well model the microbiota: the vessel will be the host gut, the influx will 

be the ingested food (diet) and the efflux will be due to the host digestion and discard. 

The deterministic equations for a one dimensional chemostat model, i.e. a chemostat 

with just one bacteria population b fed with nutrient n, are  

 

(8) 

where, b refers to the bacteria population measure, n to that of the nutrient, D 

corresponds to the bacteria death rate, Dn to the nutrient dilution rate, kmax is the 

Michaelis-Menten maximum growth rate, Kn is the half-saturation constant and 1⁄β is 

the yield. 
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So, the bacteria population abundance b, can change with time because some new 

individual is born (and this is related with some nutrient consumption), that is the first 

term of the sum, or because someone dies, as made explicit by the second term of the 

sum. For what concern the nutrient, instead, we have a constant influx n0 (e.g. diet), a 

constant efflux −Dn x n (e.g., food absorbed by our body or discard), and an efflux due 

to the bacteria consumption, that is the last term. 

We can expand this chemostat model in two dimensions, considering two bacteria 

population b1 and b2, competing for the same nutrient n.  

 

(9) 

The competition for the same nutrient yields a coupling of the bacterias equations: for 

example, n partecipates to the growth term of b1, but n depdens on both b1 and b2, 

thus the dyanamics of b1 will depend also on b2. 

Moreover, following the idea in [16] and [17], we added to this model a further constant 

influx term, a density dependence effect that does not depend on the bacteria 

population abundance b. 

 

(10) 

The stochastic version of this model can be analytically solved under the nutrient 

saturation condition. In this case, the two differential equations for the bacteria 

populations b1 and b2 becomes uncoupled, being the nutrient n constant, and the 

solution will be a mixture of the distributions for b1 and b2, that will be two Negative 

Binomials, as for the purely neutral case of [16] and [17]. 
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2.8.4 STOCHASTIC SIMULATIONS 

The model was simulated stochastically with the Gillespie algorithm implemented in 

python. The simulation showed two main situations.   

When Kn1 and Kn2 are little compare with n, the   terms     and  

approximate to kmax1 and kmax2. In this situation the interaction due to nutrient 

competition has a little effect and simulations show two skewed distribution for the  b1 

and b2 populations (Fig. 2) that are well fitted by a Negative Binomial distribution, that 

is the continuous equivalent of the negative binomial distribution. 

 

 

 

Figure 2. Simulation (green) of the chemostat 2D model with influx terms for two bacteria 
populations, with  half-saturation constants  Kn1 = 0.001 and Kn2 = 0.001 and an equilibrium value 

for the nutrient n ~ 40. The red and blue curves have been obtained with a least squares fitting 
respectively with a gamma and a normal distribution. 

 

With higher Kn1 and Kn2 the 2 bacteria distributions becomes instead more normal 

and symmetric, but are again well fitted by the gamma (i.e. Negative Binomial) 

distribution (Fig. 3). 

  



FP7- 600803    [D2.4 – v2.0]    Page 26 of 37 

 
 

 

 

Figure 3.  Simulation (green) of the chemostat 2D model with influx terms for two bacteria 
populations, with  half-saturation constants  Kn1 = 10 and Kn2 = 100 and an equilibrium value for 

the nutrient n ~ 60. The red and blue curves have been obtained with a least squares fitting 
respectively with a gamma and a normal distribution. 

 

2.8.5 FIT WITH A MIXTURE OF 2 NEGATIVE BINOMIALS 

The experimental RSA distributions have been fitted with a mixture of two Negative 

Binomials, one describing rarest species and the other describing the most abundant: 

with k1,2 = S1,2/b1,2 and  θ1,2 = b1,2/d1,2. 

As already pointed out, because of its very long tail, the RSA is represented in the form 

of Preston plot, i.e. with a logarithm to base 2 x-axis. In this way, each bin actually 

contains the sum of the number of species with abundance category between its 

minimum and maximum (e.g. bin [22,23) represents the number of species having 4, 5, 

6 or 7 individuals). Thus, the fit was computed considering the integral of the Negative 

Binomial distribution from the minimum to the maximum of each bin, that can be simply 

obtained subtracting the Negative Binomial cumulative in the minimum from the 

Negative Binomial cumulative in the maximum of the bin. 

For what concern the Negative Binomial for the rarest species, we noted that the 

parameter θ = b/d → 0, making the Negative Binomial tend to a Poisson distribution. 

This limit resulted ambiguous for the fit computation, thus we used a different 

parametrization, fitting the rare Negative Binomials in term of k =S/b and its mean µ = k 

θ / (1 – θ). 
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The fit worked well for all samples. In particular at 97% similarity threshold, that is the 

value we focused on for further analysis, the minimum R-squared was 0.891. 

 

  

  

 
Figure 4. Fit with a mixture of 2 Negative Binomials of the RSA of one sample from [11] at different 
similarity thresholds: 97% (top-left), 95% (top-right), 93% (bottom-left) and 90% (bottom-right). 

 
We focused on 97% similarity threshold, that is the common value used for taxonomy 

analysis, and we grouped the samples according to their age range and diet group. For 

both these comparisons we computed the mean and standard error of the fit 

parameters for all the groups. Results are shown in Figure 5 and Figure 6. 
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Figure 5. Mean fit parameters for 5 age groups. Top figures correspond to the parameters of the 
Negative Binomial describing abundant species, while bottom figures refer to the rarest species 
Negative Binomial. 
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Figure 6. Figure 5. Mean fit parameters for the four diet groups (from 1 to 4); diet 0 means Young 
control samples, for which no diet information was available. Top figures correspond to the 
parameters of the Negative Binomial describing abundant species, while bottom figures refer to the 
rarest species Negative Binomial. 

 

2.9 EFFECT OF DIET COMPONENTS ON GM BACTERIA 

Basing mainly on the work of Wu et al. [20] and the review of Scott et al. [21], we 

defined a list of important GM bacteria and assessed how different diet component 

affect their abundance in the Gut.  

In the following tables, symbol “+” means a positive correlation between the bacteria 

and the corresponding nutrient, while “-” stands for negative correlation. If no 

correlation have been observed in these works, no symbol is included. 

 

 

BACTERIA PUFA SUGARS FIBER
Bacteria.Actinobacteria -

+ -

+ - + - +

-

Bacteria.Actinobacteria.Actinobacteria.Coriobacteriales +

+
Bacteria.Bacteroidetes + +
Bacteria.Bacteroidetes.Bacteroidia + + +
Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales + + +

- + + + + + - -

- + + + + + - - -

+

+ - - - -

- - +

+ - -

+ + + - - -

-

+ + -

+ + - - -

-

-

SATURAT
ED 
FATTY 
ACIDS

CLA 
FATTY 
ACIDS

TRAN
S 
FATTY 
ACIDS

VEGETA
BLE 
PROTEIN
S

ANIMAL 
PROTEIN

TOTAL 
PROTEIN
S

PREBI
OTICS

TOTAL 
CARBOH
YDRATE
S

Bacteria.Actinobacteria.Actinobacteria.Actinomycetales
.Actinomyces

Bacteria.Actinobacteria.Actinobacteria.Actinobacteridae
.Bifidobacteriales.Bifidobacteriaceae.Bifidobacterium
Bacteria.Actinobacteria.Actinobacteria.Actinobacteridae
.Bifidobacteriales.Bifidobacteriaceae.Bifidobacterium.B
ifidobacterium adolescentis

Bacteria.Actinobacteria.Actinobacteria.Coriobacteriales
.Coriobacteriaceae

Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Bacter
oidaceae
Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Bacter
oidaceae.Bacteroides
Bacteria.Bacteroidetes.Bacteroidetes.Bacteroidales.Bac
teroidaceae.Bacteroides thetaiotamicron
Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Prevot
ellaceae
Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Prevot
ellaceae.Paraprevotella
Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Prevot
ellaceae.Prevotella
Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Porph
yromonadaceae
Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Porph
yromonadaceae.Barnesiella
Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Porph
yromonadaceae.Butyricimonas
Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Porph
yromonadaceae.Odoribacter
Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Porph
yromonadaceae.Parabacteroides
Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Porph
yromonadaceae.Parabacteroides diastonis
Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Riken
ellaceae
Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Riken
ellaceae.Alistipes
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2.10 GM BACTERIA MAIN PRODUCTS 

Finally, the main products of the considered bacteria have been report in the following 

tables, with particular attention to short-chain fatty acids. 

 

 

BACTERIA PUFA SUGARS FIBER
Bacteria.Firmicutes - -
Bacteria.Firmicutes.Bacilli + +
Bacteria.Firmicutes.Bacilli.Lactobacillales + +

+ - +

+

+ +

+ +
Bacteria.Firmicutes.Clostridia - - +
Bacteria.Firmicutes.Clostridia.Clostridiales - -

- +

- +

+ +

-

-

-

- -

- -

- + +

-

+ - + +

-

-

- + +

- -

- - - + +

- + + +

+

-

-
Bacteria.Firmicutes.Erysipelotrichi + -

Bacteria.Firmicutes.Erysipelotrichi.Erysipelotrichales + -

+ -

+ -

- + -

-

-
Bacteria.Fusobacteria -
Bacteria.Fusobacteria.Fusobacteria -

Bacteria.Fusobacteria.Fusobacteria.Fusobacteriales + - -
Bacteria.Proteobacteria - - + +
Bacteria.Proteobacteria.Betaproteobacteria - + +

- +

+ +

-
Bacteria.Proteobacteria.Gammaproteobacteria + -
Bacteria.TM7 +

SATURAT
ED 
FATTY 
ACIDS

CLA 
FATT
Y 
ACID
S

TRANS 
FATTY 
ACIDS

VEGETA
BLE 
PROTEIN
S

ANIMAL 
PROTEIN

TOTAL 
PROTEIN
S

PREBI
OTICS

TOTAL 
CARBOH
YDRATE
S

Bacteria.Firmicutes.Bacilli.Lactobacillales.Lactobacilla
ceae
Bacteria.Firmicutes.Bacilli.Lactobacillales.Lactobacilla
ceae.Lactobacillus
Bacteria.Firmicutes.Bacilli.Lactobacillales.Lactobacilla
ceae.Lactobacillus.Lactobacillus ruminis
Bacteria.Firmicutes.Bacilli.Lactobacillales.Streptococc
aceae
Bacteria.Firmicutes.Bacilli.Lactobacillales.Streptococc
aceae.Streptococcus

Bacteria.Firmicutes.Clostridia.Clostridiales.Acidaminoc
occaceae.Phascolarctobacterium
Bacteria.Firmicutes.Clostridia.Clostridiales.Clostridiace
ae.Anaerotruncus

Bacteria.Firmicutes.Clostridia.Clostridiales.Clostridiace
ae.Anaerotruncus.Faecalibacterium prausnitzii
Bacteria.Firmicutes.Clostridia.Clostridiales.Clostridiace
ae.Clostridium
Bacteria.Firmicutes.Clostridia.Clostridiales.Clostridiace
ae.Clostridium.Clostridium histolyticum
Bacteria.Firmicutes.Clostridia.Clostridiales.Incertae_Se
dis_XIV
Bacteria.Firmicutes.Clostridia.Clostridiales.Incertae_Se
dis_XIV.Blautia
Bacteria.Firmicutes.Clostridia.Clostridiales.Incertae_Se
dis_XIII
Bacteria.Firmicutes.Clostridia.Clostridiales.Incertae_Se
dis_XIII.Anaerovorax
Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospir
aceae
Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospir
aceae.Coprococcus
Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospir
aceae.Roseburia
Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospir
aceae.Dorea
Bacteria.Firmicutes.Clostridia.Clostridiales.Eubacteriac
eae
Bacteria.Firmicutes.Clostridia.Clostridiales.Eubacteriac
eae.Eubacterium.Eubacterium rectale
Bacteria.Firmicutes.Clostridia.Clostridiales.Ruminococ
caceae
Bacteria.Firmicutes.Clostridia.Clostridiales.Ruminococ
caceae.Butyricicoccus
Bacteria.Firmicutes.Clostridia.Clostridiales.Ruminococ
caceae.Oscillibacter
Bacteria.Firmicutes.Clostridia.Clostridiales.Ruminococ
caceae.Ruminococcus.Ruminococcus bromii
Bacteria.Firmicutes.Clostridia.Clostridiales.Ruminococ
caceae.Subdoligranulum
Bacteria.Firmicutes.Clostridia.Clostridiales.Veillonellac
eae.Megasphaera

Bacteria.Firmicutes.Erysipelotrichi.Erysipelotrichales.E
rysipelotrichaceae
Bacteria.Firmicutes.Erysipelotrichi.Erysipelotrichales.E
rysipelotrichaceae.Coprobacillus
Bacteria.Firmicutes.Erysipelotrichi.Erysipelotrichales.E
rysipelotrichaceae.Holdemania
Bacteria.Firmicutes.Erysipelotrichi.Erysipelotrichales.E
rysipelotrichaceae.Turicibacter
Bacteria.Firmicutes.Negativicutes.Selenomonadales.Ac
idaminococcaceae.Acidaminococcus

Bacteria.Proteobacteria.Betaproteobacteria.Burkholderi
ales
Bacteria.Proteobacteria.Betaproteobacteria.Burkholderi
ales.Alcaligenaceae.Sutterella
Bacteria.Proteobacteria.Betaproteobacteria.Burkholderi
ales.Alcaligenaceae.Parasutterella
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BACTERIA PRODUCTS OTHER INFO
Bacteria.Actinobacteria
Bacteria.Actinobacteria.Actinobacteria.Actinomycetales.Actinomyces  pathogenic bacteria

Bacteria.Actinobacteria.Actinobacteria.Coriobacteriales
Bacteria.Actinobacteria.Actinobacteria.Coriobacteriales.Coriobacteriaceae  enriched in obese
Bacteria.Bacteroidetes gram negative, decrease in obesity
Bacteria.Bacteroidetes.Bacteroidia
Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales
Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Bacteroidaceae

Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Bacteroidaceae.Bacteroides Gram-negative, pathogenic bacteira

Gram-negative, pathogenic bacteira

Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Prevotellaceae
Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Prevotellaceae.Paraprevotella succinate, acetate
Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Prevotellaceae.Prevotella SCFAs
Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Porphyromonadaceae
Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Porphyromonadaceae.Barnesiella succinate, acetate

catalase
Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Rikenellaceae

Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Rikenellaceae.Alistipes

Bacteria.Actinobacteria.Actinobacteria.Actinobacteridae.Bifidobacteriales.Bifidobac
teriaceae.Bifidobacterium

acetate, butyrate, ammonia, 
molecular hydrogen

control intestinal pH and intestinal microbial 
homeostasis, inhibit  pathogens, modulate the 
local and systemic immune responses, repress 
procarcinogenic enzymatic activities within the 
microbiota, produce SCFAs, produce vitamins, 
and bioconvert a number of dietary compounds 
into bioactive molecules. 

Bacteria.Actinobacteria.Actinobacteria.Actinobacteridae.Bifidobacteriales.Bifidobac
teriaceae.Bifidobacterium.Bifidobacterium adolescentis

SCFAs (propionate, butyrate, 
and acetate), lactate, vitamins, 
cyanocobalamin, nicotine, 
thiamin, folic acid,  pyridoxine

acetic acid, iso valeric acid, and 
succinic acid

Bacteria.Bacteroidetes.Bacteroidetes.Bacteroidales.Bacteroidaceae.Bacteroides 
thetaiotamicron

acetic acid, iso valeric acid, and 
succinic acid
SCFAs (Acetate, propionate), 
succinate 

Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Porphyromonadaceae.Butyricimo
nas

butyrate, isobutyrate, succinate, 
acetate, propionate

Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Porphyromonadaceae.Odoribacte
r

Succinate, acetate, iso-valeric 
acid

Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Porphyromonadaceae.Parabacter
oides

acetic acid,succinic 
acids,isovaleric acid, propionic 
acid, isobutyrate,formic acid, 
lactic acid, catalase, Mannose, 
raffinose, L-Rhamnose, 
Trehalose

oides diastonis

succinate, acetate, mannose, 
raffinose, propionic acid
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3 Deliverable Conclusions 

We created a metabolic flexibility pathway for skeletal muscle cell and we exploited it to 

assess the effects of Insulin Resistance on the impairment of such switch in skeletal 

muscle cells. This was performed basing on gene expression data from the GEO 

database, that also enabled us to evaluate the effects of IR and T2D on liver and 

adipose tissue. Several pathways resulted significantly different in all these 3 tissues 

BACTERIA PRODUCTS OTHER INFO
Bacteria.Firmicutes increase with obesity
Bacteria.Firmicutes.Bacilli
Bacteria.Firmicutes.Bacilli.Lactobacillales
Bacteria.Firmicutes.Bacilli.Lactobacillales.Lactobacillaceae
Bacteria.Firmicutes.Bacilli.Lactobacillales.Lactobacillaceae.Lactobacillus lactate help maintain the pH level

lactate help maintain the pH level
Bacteria.Firmicutes.Bacilli.Lactobacillales.Streptococcaceae
Bacteria.Firmicutes.Bacilli.Lactobacillales.Streptococcaceae.Streptococcus lactate pathogenic bacteria
Bacteria.Firmicutes.Clostridia
Bacteria.Firmicutes.Clostridia.Clostridiales

propionate gram negative, succinate consumer
Bacteria.Firmicutes.Clostridia.Clostridiales.Clostridiaceae.Anaerotruncus

formate, D-lactate, butyrate
Bacteria.Firmicutes.Clostridia.Clostridiales.Clostridiaceae.Clostridium butyrate

organic solvents such as butanol
Bacteria.Firmicutes.Clostridia.Clostridiales.Incertae_Sedis_XIV

Bacteria.Firmicutes.Clostridia.Clostridiales.Incertae_Sedis_XIV.Blautia
Bacteria.Firmicutes.Clostridia.Clostridiales.Incertae_Sedis_XIII

Bacteria.Firmicutes.Clostridia.Clostridiales.Incertae_Sedis_XIII.Anaerovorax
Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae SCFA, butyrate, gas
Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.Coprococcus butyrate
Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.Roseburia butyrate
Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.Dorea
Bacteria.Firmicutes.Clostridia.Clostridiales.Eubacteriaceae SCFA

butyrate
Bacteria.Firmicutes.Clostridia.Clostridiales.Ruminococcaceae SCFA
Bacteria.Firmicutes.Clostridia.Clostridiales.Ruminococcaceae.Butyricicoccus butyrate
Bacteria.Firmicutes.Clostridia.Clostridiales.Ruminococcaceae.Oscillibacter valerate

ethanol, acetate, formic acids
Bacteria.Firmicutes.Clostridia.Clostridiales.Ruminococcaceae.Subdoligranulum butyrate, formic acid

Bacteria.Firmicutes.Clostridia.Clostridiales.Veillonellaceae.Megasphaera
Bacteria.Firmicutes.Erysipelotrichi
Bacteria.Firmicutes.Erysipelotrichi.Erysipelotrichales
Bacteria.Firmicutes.Erysipelotrichi.Erysipelotrichales.Erysipelotrichaceae

acetate, succinate, lactate

propionate, acetate, butyrate
Bacteria.Fusobacteria
Bacteria.Fusobacteria.Fusobacteria
Bacteria.Fusobacteria.Fusobacteria.Fusobacteriales butyrate, acetate
Bacteria.Proteobacteria Gram-negative
Bacteria.Proteobacteria.Betaproteobacteria nitrite, sulfate gram negative
Bacteria.Proteobacteria.Betaproteobacteria.Burkholderiales gram negative

Gram-negative, pathogenic bacteria
gram negative

Bacteria.Proteobacteria.Gammaproteobacteria sulfur Gram-negative, pathogenic bacteria
Bacteria.TM7 related to inflammation
Bacteria.TM7.TM7_incertae_sedis

Bacteria.Firmicutes.Bacilli.Lactobacillales.Lactobacillaceae.Lactobacillus.Lactobac
illus ruminis

erium

acterium prausnitzii

histolyticum

acetate, ethanol, lactate, 
isobutyrate, isovalerate

acetate, butyrate, ammonia, 
molecular hydrogen

um rectale

inococcus bromii

Butyrate, valerate, propionate, 
acetate, caproate

cillus
ania
cter
nococcus

la
terella
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between healthy and unhealthy patients. Specifically, in skeletal muscle a significant 

gene was PIK3, that is a key gene in the insulin signaling pathway, so as in our 

metabolic flexibility pathway. In liver, a particularly interesting gene that changed 

significantly was TCF7. 

We created a new stochastic model for the GM RSA, relaxing the neutral hypothesis 

previously proposed. The model was computed starting from a chemostat model for 2 

populations competing for the same nutrient. A constant influx term corresponding to 

immigration, speciation or a density dependence effect was added. The model was 

solved analytically, when possible, and numerically in all other cases. For this purpose 

a Gillespie algorithm have been implemented in Python. The stationary solution 

resulted to be a mixture of two Negative Binomials and have been applied on data from 

Claesson et al. The results show that the model works well and that its parameters can 

be exploited to discriminate between different ages, diets or health states. 

Finally a table summarizing how the main diet components affect GM have been 

proposed, also adding the information about the principal products arising from them. 

These products are the means by which diet, through its effects on GM, affects the 

host metabolism and immune system, contributing to the metabolic flexibility switch 

impairment that is observed in Insulin Resistant and Type 2 Diabetes subjects. 

 

4 Perspective work 

TCF7L2 genetics risk variants are the most robust and the most universal biomarkers 

associated with T2D. Since its first description in the study from Sladek et al. (Sladek 

R. et al., Nature, 2007) a number of studies confirmed the association between several 

TCF7L2 genetic variants and the occurrence of T2D. Recently, Garagnani et al. 

(Garagnani P. et al., Aging, 2012) performed an association study between TCF7L2 

and T2D by using centenarians as super-controls. Centenarians can be considered as 

model of healthy disease-free longevity, thus representing the gold standard of genetic 

background. In the study the centenarians resulted significantly enriched of the non-risk 

allele in respect of general population, considered in the study as classical controls and 

in respect with patient with T2D, and in particular with the sub-group of patients that 

affected by T2D complications. In this study we suggested for the first time that, while 

the TCF7L2 rs7903146 T is a risk allele, the C allele can be considered a longevity 

one. This perspective was confirmed in a study reviewed in Corella et al. (Corella et al., 
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Ageing Research Review, 2014) were in a large cohort they showed that the three 

rs7903146 genotypes strongly correlate with stroke mortality. In this study they also 

demonstrate that the effect of the risk allele is completely counteracted by 

Mediterranean diet.  

All these positive results have posed TCF7L2 in the middle of T2D research and a 

number of study have been conducted in order to elucidate the mechanism that leads 

TCF7L2 genetic variants to T2D. 

Although the exact mechanism is still obscure, a number of studies on human model 

have elucidated specific effect of TCF7L2 variants on carrier phenotype. In particular a 

series of studies reviewed in Wagner et Al. (Wagner et al., Molecular Metabolism, 

2014) demonstrate that the TCF7L2 rs7903146 reduce the insulin production by 

hampering the incretin efficacy (Incretins like GLP1 and GIP are secreted after eating 

and stimulate insulin secretion). This peculiar effect is counteracted by fibres intake 

(this strongly reminds the above cited study by the Corella et al. in which the effect of 

the T allele on stroke mortality is cancelled by Mediterranean Diet). 

Another phenotypic effect of TCF7L2 gene variants is the increase of liver glucose 

production. In particular a study from Ling et al. (Ling et al., Journal of Hepatology, 

2013) demonstrate that the occurrence of secondary T2D after liver transplantation is 

strongly associated with the TCF7L2 genetic background of the donor, indicating that 

the TCF7L2 risk genetics exerts a significant effect on liver physiology leading to a 

condition that favours the onset of T2D. 

All these findings can be summarized in the picture below: 
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These results are certainly of interest to the MISSION-T2D consortium and indeed 

partner CNR in collaboration with UniBO is planning to implement the necessary 

modification to the project’s model outcome pertaining the TCF7L2 genetics and to test 

whether the same conclusions of the above-mentioned study can be reproduced by the 

model.  

More concretely, TCF7L2 genetics can be implemented (as a first approximation) in the 

MISSION-T2D simulator as follow: 

• Represent by a Boolean variable the TCF7L2 genetic risk; 

• The high-risk-allele carriers should present a reduced insulin production after 

calories intake and higher hepatic glucose production. The reduced insulin 

production can be cancelled by adding qualitative features to the calories intake 

such as Mediterranean Diet and/or fibres intake; 

• Testing the dependency between a different macronutrients distribution intake 

and the effects on the risk of developing insulin sensitivity might therefore be 

calculated.  
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5 Appendix: List of abbreviations used 

AT Adipose Tissue 
APC Antigen-Presenting Cell (immunocompetent cell type) 
CD Cluster of Differentiation (surface markers of lymphocytes) 
CTL Cytotoxic T lymphocyte (immunocompetent cell type) 
DC Dendritic Cell (immunocompetent cell type) 
HSP Heath shock protein (signalling molecule) 
IL Interleukin (signalling molecule) 
IFN-γ Interferon gamma (signalling molecule) 
LPS Lipopolysaccharide (component of pathogen cell walls, signal of 

danger) 
MCP-1 Monocyte Chemotactic Protein-1 (signalling molecule) 
MHC Major Histocompatibility Complex (surface protein of 

immunocompetent cell types) 
MIP-1α Macrophage Inflammatory Protein-1 alpha (signalling molecule) 
T2D Type 2 Diabetes 
TNF-α Tumor Necrosis Factor alpha (signalling molecule) 

Table  List of abbreviations 
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