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Executive Summary 
 

In this document are reported the results of the Task 2.2 
“Report on deterministic and stochastic modelling”, 
regarding the activities of Gut Microbioma modeling. The 
main goal is to create a dynamical model of Gut Microbiota 
evolution, by taking into account the complexity of the 
intrinsic and extrinsic interactions of this ecological system 
with components such as the bacterial species, food and 
other environmental variables and the Immune System. 
After an ecological instantiation, we developed firstly a 
deterministic model of Gut Microbiota and simulated its 
temporal evolution by taking into account the interactions of 
species and the effect of diet. The deterministic model is 
then translated into a stochastic framework by using the 
Chemical Master Equation methodology, a novel and 
innovative approach, that will be used to fit experimental 
data distributions we have obtained in our previous 
deliverable. 

Keywords Large system of ordinary differential equations, stochastic 
simulation, Gillespie algorithm. External perturbations 
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1 Deliverable description 

In this document are described the hypotheses, the theoretical assumptions, the   

methodologies and the results of the Task 2.2: “Report on deterministic and stochastic 

modelling”. The main focus will be on the modelling activities and we will describe the 

main steps we have done for the creation of such a model. The main goal is to develop 

a dynamical model of Gut Microbiota and characterize its response to external 

perturbations such as dietary changes. The model is based on a refinement of the 

generalized n species Volterra model by adding the effect of food intake. The model is 

hence ready to be used for fitting real metagenomic data. After this, we present a 

stochastic implementation of this model, that can be used for fitting the data 

distribution. 

The numerical solution of these systems has been obtained on a dedicated server with 

a general purpose software developed in Python, C and Mathematica. The server is a 

Linux 36 core cluster with about 200 Gb of RAM hosted in the Physics and Astronomy 

Department of the Bologna University (Partner 3) and is appropriate to perform large 

scale numerical simulations. 

 

2 Introduction 

The main goal of WP 2 is to implement and manage the interaction between clinical 

data with the immune system simulator (ISS, WP6) both as input source and as output 

interpretation, including validation. The Task 2.2 has to provide the framework for the 

setting up for solving large system of Nonlinear Ordinary Differential Equation and their 

stochastic generalization. The stochastic generalization is done by the so called 

Chemical Master Equation (CME) that is a phenomenological set of first order 

differential equations describing the probability of the system to be in a discrete state, 

that usually indicates the number of objects (in this case the integer number of 

bacteria). 

The CME we are using is a discrete Markov process with continuous time with the 

additional property of “one step process” (One step Poisson process), meaning that the 

possible transitions are those from the nearest- neighbour states (n-1, n, n+1). 
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According to these properties, the general solution of the CME is a time dependent 

probability distribution, while the equilibrium solution is a stationary probability 

distribution. 

Although in some cases is possible to obtain the analytical solution for the CME, and 

especially for the stationary distribution, we choose to develop a general module in 

Python and C for the numerical solution of the CME by using the Gillespie algorithm 

and its generalization (the tau leaping method). 

The same is true also for the system of ODE, the model we used to simulate the   Gut 

Microbiota (GM) is a simple ecological model, based on a generalization of the Lotka-

Volterra equation (the so called n species Volterra model). This model can admit also 

an analytical solution and several properties can be obtained by linear stability 

analysis, but we preferred to develop a module for the numerical integration of the 

system, even if we have developed software for the linear stability analysis by using 

symbolic algebra systems such as Mathematica and Python, capable to perform 

symbolic manipulation on the systems equations. 

 

3 Deliverable results 

3.1 Ecological theories for Gut Microbiota modeling 

The main purpose of modern ecological theories is to describe and explain the within-

trophic-level biodiversity. Here, with the term ‘biodiversity’ we denote both species 

richness, that is the total number of species in a defined space at a given time, and 

relative species abundance (RSA), which refers to their commonness or rarity. Instead, 

with the words ‘within-trophic-level’ we mean that we are going to study organisms that 

occupy the same position in a food chain. Thus we will not consider problems such as 

the trophic organization of communities, or what controls the number of trophic levels, 

or how biodiversity at one trophic level affects diversity on other trophic levels. The 

reason for this is that, while not complete, a theory of biodiversity within trophic levels 

would nevertheless be a major advancement because most biodiversity resides within 

rather than between trophic levels (i.e. there are many more species than trophic 

levels). 

In this perspective, we can define an ‘ecological community’ as a group of trophically 

similar species that exist in the same local area and that actually or potentially compete 
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for the same or similar resources, and a ‘metacommunity’ as the ensemble of all 

trophically similar individuals and species in a regional collection of ‘local communities’, 

in which species may not actually compete because of separation in space or time. 

Modern ecological theories can be distinguished in essentially two main schools of 

thought: the niche assembly perspective and the dispersal one. 

The physicist Heinz Pagels (1982) once observed that there seem to be two kinds of 

people in the world. There are those who seek deterministic order and meaning in 

every event, and those who believe events to be influenced, if not dominated, by 

random chance. This is the controversy between determinism and stochasticity that 

dominated the twentieth-century physics, one of whose triumphs was exactly to prove 

that both views of physical nature are simultaneously true and correct, but on very 

different spatial and temporal scales. The same kind of debate also persists for 

example in population genetics debates, where the question is whether most changes 

in gene frequencies result from random evolution or from natural selection, and 

similarly exists in ecology, where there are these two conflicting world views on the 

nature of ecological communities: the niche and the dispersal perspectives. 

 

3.2 Niche Theory  

The niche assembly perspective holds that communities are groups of interacting 

species whose presence or absence and even their relative abundance can be 

deduced from deterministic ‘assembly rules’ that are based on the ecological niches or 

functional roles of each species. Here, the concept of ‘ecological niche’ summarizes the 

interactions between species and their environment, and is thus defined by two 

components: 

• the requirement for an organism of a given species to live in a given 

environment (the extent to which a limiting factor, like a resource, a predator or 

a parasite, influences the birth and death rate of that species); 

• the impact of the species on its environment (the extent to which the growth of a 

population alters the limiting factor, i.e. the availability of a resource or the 

density of a predator or parasite). 

According to this view, species coexist in interactive equilibrium and a stable co-

existence among competing species is made possible by niche partitioning. The 

stability of the community and its resistance to perturbation derive from the adaptive 
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equilibrium of member species, each of which has evolved to be the best competitor in 

its own ecological niche. Niche-assembled communities are limited-membership 

assemblages in which interspecific competition for limited resources and other biotic 

interactions determine which species are present or absent from the community. We 

have to under line that most proponents of niche assembly come out of a strong neo-

Darwinian tradition, which focuses on the lives of interacting individuals and their 

fitness consequences. The concept of niche follows naturally and logically as the 

population level summation of the individual adaptations of organisms to their 

environments. 

Niche theory resulted able to predict patterns of species traits and species separation 

on nutrient gradients similar to those observed in different studies and provided a 

potential explanation for the high diversity of nature, predicting that habitat 

heterogeneity can allow a potentially unlimited number of species to co-exist if species 

that are better at dealing with one environmental constraint are necessarily worse at 

dealing with another [34]. On the other hand, this theory is not able to predict a limit to 

diversity, and consequently neither to explain species relative abundance. 

 

3.3 Dispersal and Neutral Theory  

The other world view is the dispersal assembly perspective, which asserts that 

communities are open, non-equilibrium assemblages of species largely thrown together 

by chance, history, and random dispersal. Species come and go, their presence or 

absence is dictated by random dispersal and stochastic local extinction. 

Actually we will refer to a particular class of dispersal theories, those called ‘neutral’, in 

which ecological communities are structured entirely by ecological drift (i.e. 

demographic stochasticity), random migration, and random speciation. By neutral we 

mean that the theory treats organisms in a trophically defined community as essentially 

identical in their per capita probabilities of giving birth, dying, migrating, and speciating 

(ecological equivalence). We have to underline that neutrality is defined at the 

individual level, not at the species level, thus this is a very unrestrictive and permissive 

definition since it does not preclude interesting biology from happening or complex 

ecological interactions from taking place among individuals. All that is required is that 

all individuals of every species obey exactly the same rules of ecological engagement. 

So, for example, if all individuals and species enjoy a frequency-dependent advantage 
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in per capita birth rate when rare, this per capita advantage will be exactly the same for 

each and every individual of a species of equivalent abundance. 

One consequence of a focus on adaptation and niche assembly has been a tendency 

to accept a equilibrium and a relatively static view of niches and ecological 

communities. This focus on individual variation in fitness, adaptation and niche, 

moreover, has led naturally to small-scale, short-term experimental studies of 

processes of competition, selection and adaptation. Proponents of dispersal assembly 

criticize this and typically work on much larger spatial and temporal scales, using 

biogeographic or paleo-ecological frames of reference, through an approach less 

experimental and more analytical of large-scale statistical patterns. 

Thus for example, as reported in literature, data from much fossil records revealed that 

many pre-Holocene, full glacial, and previous interglacial plant communities are very 

different from modern communities. The evidence from many studies is strong that 

communities undergo profound compositional changes, sometimes gradual, sometimes 

episodic, on timescales of centuries to millennia and longer. 

The fact is that species are transient, even if transit time to extinction are often of the 

order of millions or tens of millions of year, and furthermore in most of the cases local 

extinction can not be attributed to competitive exclusion. So, as suggested by Hubbell 

in his work, we should not concentrate on the indefinite coexistence of specie, but 

rather on the study of species presence-absence, persistence times, and above all 

species relative abundance (RSA) in communities, that can be compared with real 

data. 

 

3.4 The Gut Microbiota model: biological and ecological 
background 

The human metagenome is the set of the Homo sapiens genes plus the trillions of 

genes in the genomes of microbes that live in the human body. The microbial genome 

(microbiome) is in a dynamical relation with the human organism and helps it in 

carrying out crucial functions such as metabolic processes, (food absorption, short 

chain fatty Acid (SCFA) and vitamins production), shaping, control and protective 

Immune (IS) system development, that helped the  (co)-evolution of human being.  

With the term Metagenomics, we define the set of omics measurements aimed to 

quantify the composition and the interactions dynamics between the host and 
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the microbiome. This includes characterization at the level of DNA 

(metagenome), RNA (`meta'-transcriptome), protein (meta-proteome) and 

metabolic network (`metabolome'), both for the host and the microbiome. 

Hence, H.sapiens is a metaorganism (or super organism) where the different 

microbiota present in different organs play a major physiological and pathological role. 

We will refer in particular to the Gut Microbiota (phylogenetic) and Gut Microbiome 

collectively indicated here as GM.  

The bidirectional cross talk between host and GM is supported by several 

experimental data (pre- and pro-biotics, GM transplants, antibiotics, GM transplants 

results, induction of donor phenotypes in the host, including the recovery of a sick 

recipient) and from the association of GM composition with pathological states, 

such as Obesity, Aging. GM is sensitive to environmental stimuli (particularly to 

nutrition), has an high individual specificity, plasticity and is modifiable  

A crucial metagenomic quantity is the intersection between the host and the 

microbiome, this interface is the way by which the host and the microbiota interact. 

This interaction is personalized, dynamic, bidirectional and history-dependent and 

is taking place in a multivariate way, by exchange of various molecules: metabolic, 

genetic, immunitary, etc. 

The dynamic properties of the GM are caused by the fact that GM is a complex 

ecosystem with a complex dynamics derived by the interactions with components 

such as the virome (the set of viruses in the human body) and the Immune System, 

that can be modeled by classical predator-prey and ecological/microbial growth 

equations (Lotka-Volterra, Chemostat, etc). 

The classical Lotka-Volterra system has been applied to model microbial community in 

various contexts, both with continuous and discrete time. The way to introduce the 

effect of diet and/or antibiotics is to introduce an external perturbation that is added to 

the n species Volterra model. 

Formally, this model consists of autonomous, non-linear, coupled first-order ordinary 

differential equations. 

 
a) Predator Prey model (Lotka Volterra model) 
 
We report the classical model only for the sake of simplicity, and to point out that this 
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model has been used for describing the dynamics of of GM bacteria and viruses and 

was capable to provide a solution consistent with the so called “Red Queen Dynamics”. 

 
 
 
 
 
 
 
 
 
 

In this model, x is the number of preys, y is the number of predators, while a,b,c,d are 

respectively: the growth rate of the preys, the rate of predation (how many preys are 

eaten by the predators), the reproduction rate for the predators (proportional to the 

number of eaten preys) and the death rate of the predators (proportional to the inverse 

of the lifespan). 

 
 
b) N species Volterra model 
A generalization to n species of the classical LV model is obtained by introducing the 

interaction matrix M 

 
 
 
 
 
xi indicates the number of the I-th bacterial species and ri is the natural birth or death of 

the  i-th specie in absence of all the other species. The sign and the absolute values of 

the matrix elements Mij (i <> j) refer respectively to the character and the intensity of 

the influence of the jth specie upon the ith species, while the Mii is the index of 

interspecific interaction for the i-th species. 

The matrix M, which reflects the structure of the relations in the community, is often 

termed the community matrix. 

The community matrix elements signs follow the rules stated by Odum (E.Odum, 

Fundamentals of Ecology). 

 
+  stimulating 
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-  suppressing 
0  neutral 
 
The Table 1 reports the pairwaise classification, the n-dimensional generalization is 

straightworward. 

 
Pairwise 
Interaction 

Terminology 

+ + Mutualism or symbiosis 
+ - Predator Prey 
+ 0 Commensalism 
- - Competition 
- 0 Amensalism 
0 0 Indifference (Neutral) 

Table 1 Terminology for the 6 pairwise interactions used in the GM mod 

 
c) The modified n species Volterra equations 
 
 
 

 
 
 
Where the xi, the matrix M and the ri have the same meaning of the model b) and the eil 

are the species susceptibility to the time-dependent perturbations ul(t) (e.g., antibiotic 

treatment or diet). 

 
3.5 Motivation for stochastic modeling 

In biology there are several processes that cannot be described in term of deterministic 

evolution. From protein production to the behaviour of the whole cell, not only the noise 

is ever-present, but evolution found several ways to exploit this noise to the advantage 

of the single cell or the whole population. 

One of the most intriguing example of exploitation of the stochasticity is the so-called 

``bet hedging strategy'' which can be found in several bacteria population. 

The human gut is a very peculiar environment for bacterial growth. It has plenty of 

nutrients income, but of greatly various kinds; This could severely limit the ability to 

survive of the bacteria, due to the frequent changes of environmental conditions. Also 
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the competition among different species can be harsh. Bacteria are known to enter a 

quiescent state to survive to harsher environmental condition. The main problem with 

this approach is that the process is not instantaneous, but it takes some time to happen 

(minutes to hours, usually), and this can lead to a nearly 100% extermination of the 

population in case of rapidly changing environment. 

What biologists observed is that in any bacterial population, a fraction of this population 

is always in the resistant state, whatever the condition was. This allowed a certain 

percentage of the population to survive no matter how fast the environment fluctuated. 

This was true even for monoclonal population and in general a fixed percentage of the 

population enters this resistant phase regardless of the state of the ancestor. What has 

been understood is that bacterial cells undergo a transition toward resistant state and 

back to the reproductive state with a certain fixed probability. The population that 

doesn't exploit this method will have a competitive advantage in the short term, but in 

the end will fall victim to the ambient fluctuation, while the oscillating population, albeit 

slower in growing, will persist to harder perturbations. 

The dynamics of a population of individuals can often be represented with a master 

equation, as the population size is intrinsically a discrete quantity whose evolution in 

time is driven by random interaction between individuals. Population growth, epidemic 

diffusion and the evolution, especially in the formulation of neutral theory of evolution, 

can all be represented on a discrete stochastic basis. 

The simplest population growth model treats the individuals as units whose death is a 

constant process and reproduction is a simple duplication, and it is often used for 

bacteria with good approximation. A more detailed model that takes into consideration 

phenomena like male-female interaction, competition for resources and age groups can 

be written without special difficulties. 

The concept of evolution is well known, even if commonly misinterpreted, as a 

combination of random mutations, both with reproductive fitness advantage or 

disadvantage, and natural selection, i.e. the inter-specific competition of the individual 

of the population for resources, mating and avoiding predators. Evolution can also be 

driven by purely stochastic effects, as shown by Motoo Kimura thirty years ago in his 

book ``The Neutral Theory of Molecular Evolution'', which launched the concept of 

neutral evolution. This theory states that in a small population most of the mutations 

are not fixed in the population by a competitive advantage but rather by mere case, as 
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reproduction can spread a trait among a population and fix by mere fluctuation. The 

actual probability of fixation for a neutral mutation is in the order of 1/N where N is the 

population size. Advantageous mutations spread easier and faster while 

disadvantageous ones spread slower with a higher extinction probability, but still can 

be fixed if the population is small enough. This idea of neutral evolution is becoming 

more and more important in biology, as it gives a null hypothesis to test against on 

evolutionary research. 

A similar theory has been developed in the ecological niche distribution among several 

habitats, and is based on discrete stochastic process starting from simple population 

dynamic process. 

For systems that span more than few molecular species with few hundreds molecules, 

all the simpler resolution systems fail, one way or the other, due to our limitation in 

finding analytical solutions in multidimensional system or the limit of the numerical 

computation, whose rounding errors pile up making any prediction close to 

meaningless. 

In this situation, the only feasible way to analyse a system is through MonteCarlo 

simulations of the system itself. The main system to perform this simulation is the 

Stochastic Simulation Algorithm, which simulates each reaction step in a painstaking 

way. The solution obtained with this method has been proved to converge to those of 

the corresponding master equation. Starting from the original formulation, which is a 

common workhorse in system biology, several others has been proposed by Gillespie 

himself to overcome the main limitation of the original algorithm, which is a non 

bounded time of simulation for stiff systems. 

The basic Stochastic Simulation Algorithm is strikingly simple: given a state of the 

system one has to choose which reaction will happen next between the possible ones 

and how much time will the system stay still before the reaction happens. This process 

is iterated until the whole time of interest has been simulated.  

Given the slow convergence of this method, two approximation techniques have been 

developed by Gillespie itself: the tau-leap and the Chemical Langevin Equation.  

In the tau-leap one try to evaluate how many reactions take place in a specific time 

interval tau given the propensity of each reaction at the time t, so that one can 

approximately use a Poisson distribution to evaluate how many time each reaction 

fires, and update the system correspondingly. 
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In the Chemical Langevin Equation, one works with a deterministic ODE for the mean, 

to which is added a Gaussian noise as in the standard Langevin methods, but 

designed to respect the correlation of the variation due to the various reactions, 

extracting one normal variable for each reaction instead of one for each specie as the 

basic Langevin Equation. 

 

3.6 Application to data analysis 

Variability is an intrinsic part of biological samples. Most statistical procedures do not 

consider this variability as information but rather as an hindrance. This lead to a 

statistical approach of describing the system with it's expected value, for example with 

classical ODEs, and the fit to the data is done simply considering the parameter set 

that minimize the difference between the expected value and the observed ones. More 

complex approaches, which account for a possible dependency between the expected 

value and the variability, like the generalized linear model, require a progressively 

harder mathematical effort in the description of the model. 

Stochastic methods have the intrinsic advantage of describing the variability and 

covariance among observables as a function of the parameters, and no only the 

expected value. This means that the variability actually carries information on the 

underlying system, and do no requires any special treatment to be used in the 

modelling. 

Using this conceptual framework the fit to the data is still done as a likelihood 

maximization procedure on the data. The difference is that the likelihood is not 

assumed to be a known and simple distribution but rather something that arises 

naturally from the model and does not require additional tweaking to be considered. 

This approach can be also used together with a Bayesian description of the systems. In 

this statistical framework each parameter is considered a stochastic variable and it's 

distribution after the observation of the data is given by a combination of the data 

likelihood and a previous knowledge about the parameter value. This allows us to 

obtain in a straightforward way a sensitivity analysis for all parameters, with an 

estimation of cross-sensitivity among different parameters. 

 
d) The stochastic (CME) implementation 
The stochastic version of a ODE system can be obtained by the following general 
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CME: 

 
 
 
 
 
Pn(t) is the probability to have n bacteria at the time t, and E+ and E- are the so called 

Vn Kampen operators defined on the basis of their action on a integer function: 

 
 
 
 
 
the rn and gn terms are the so called recombination and generation terms and are 

related to the negative and positive terms in the differential equation. 

An explicit form for the CME of the equation c) is not very readable, hence we report 

this in the code for the CME generation (see annex 1). 

We remark that an explicit form can be written by separation of the positive terms from 

the negative terms in the differential equation. 

The CME approach (see results) is more precise when we are considering low number 

of bacteria (n < 100). In such cases the effect of fluctuations can be very large and can 

affect the dynamics. The CME approach is more general of the ODE approach 

because if we take a larger n, the solution of the CME recovers those of the ODE. 

 
3.7 Technical information 

As stated before, all the numerical simulation have been implemented in Python, C and 

Mathematica. For the sake of code sharing with the other participant, we developed 

also a prototypical version in Ipython.  

The Ipython Notebook is a web-based interactive computational environment where is 

possible to combine code execution, text, mathematics and graphics into a single 

document.  

We have installed the Ipython on our server and the other project participant can 

access the module by a remote web client. 

The other software will be shared between the participants. 
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3.7.1 Computing facilities 

The Ipython server is hosted in a Linux server with 64 processors and 200 GB of RAM. 

The integrity of the data and the transmission flow is guaranteed by specific hardware 

and software infrastructure (firewall, mirroring disks, cryptography etc.). The server has 

a public section, and a private section, accessible only to members of our group. All the 

software (R, Mathematica, Matlab, Python, etc.) can also be accessed   with a SOAP 

interface. 

4 Deliverable results figures 

 

 

 

Figure 1 Results for the modified n species Volterra system (n=9). We report the temporal evolution 
of the deterministic and the stochastic solutions. We report only 3 stochastic solutions, that have 
been computed in the case of low number of bacteria (it is possible to appreciate the effect of the 
fluctuations). The time is in arbitrary units. The number of bacteria is approximatively 20. All the 
species are starting from the same initial condition (e.g.the number of bacteria). 
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Figure 2 Results for the modified n species Volterra system (n=9). We report the temporal evolution 
of the deterministic and the stochastic solutions. We report only 3 stochastic solutions, that have 
been computed in the case of  in medium number of bacteria (it is possible to appreciate the 
reduction of the fluctuations effect). The time is in arbitrary units. The number of bacteria is 
approximatively 100. All the species are starting from the same initial condition (e.g.the number of 
bacteria). 



   
           
 
 
 

FP7- 600803    [D2.2 - v1.3]    Page 19 of 32 

 
 

 

 
 

5 Discussion 

The dynamical model of Gut Microbiota we created and implemented is important for a 

series of reasons: 

• It takes into account external perturbations such as diet and environmental 

variations 

• This framework can be easily extended to specific genetic background of the host 

and to intersections with the Gut Microbiota 

• This model is and independent module, but it can be a source of input for the 

Immune System Simulator and can be easily translated in a series of rules, such as 

Figure 3 Results for the modified n species Volterra system (n=9). We report the temporal evolution of the 
deterministic and the stochastic solutions. We report only 3 stochastic solutions, that have been computed in the 
case of  in medium number of bacteria (it is possible to appreciate a further reduction of the fluctuations effect). 
The time is in arbitrary units. The number of bacteria is approximatively 200. All the species are starting from the 
same initial condition (e.g.the number of bacteria). 
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a cellular automata for the Gut Microbiota discrete dynamics. 

• The double implementation, deterministic and stochastic is absolutely new and can 

serve as a powerful basis for data integration, expecially the stochastic one. 

• The Chemical Master Equation applied to Gut Microbioma model fournish a 

rigorous basis for an ecological theory of Metagenomic data, including intersections 

with Immune System and environment and tor the progression from Insulin 

resistance to Type 2 Diabetes. 

• This model and code will be shared between all the components of this consortium 

 
 

6 Simulation specification 

 

6.1 Model implementation: 

 
The model was implemented in the Python programming language, leveraging it's 

capacity for numerical and symbolic calculus. The library used were: 

• numpy, for the multidimensional array data structure; 

• scipy, for the ODEs integration 

• matplotlib, for the plot visualization 

• simpy, for the symbolic manipulation needed to evaluate the CME. 

The user create an object describing the CMEs to which each reaction is added, 

specifying the reagent, the products and the kinetics of the reactions. 

From this information the program automatically generates the dynamical structures 

needed both for the Stochastic Simulation Algorithm and the ODEs integration using 

symbolic algebra manipulation. 

All the systems were composed from 9 different species of bacteria and 2 different 

nutrients were considered. 

All the parameters of the models (self growth, interaction and effects of the nutrients) 

were generated as uniform random in a given interval. 

All the bacteria species were initialized to the same value of 20 units, to evidence the 



   
           
 
 
 

FP7- 600803    [D2.2 - v1.3]    Page 21 of 32 

 
 

different behaviour of different species. 

In this model the nutrients were considered a non consumable resource, but inserting 

periodic insertion would be easy. A little amount of immigration of each species were 

considered as there is an intake of external bacteria with nutrition, and the model would 

not be stable without that intake. 

Different system size were realized by varying the magnitude of the interaction terms 

between species, as this is the stronger limit on the population size in these kind of 

models. 

 

6.2 Deterministic version 

The system automatically generates the deterministic ODEs starting from the reaction 

description of the system. 

For example in a mutation even one bacterium transform from the starting genre A to a 

different one B with a kinetic K. The algorithm use the symbolic algebra to combine all 

the kinetics for the reagents as negative terms, while it adds as positive terms for the 

products. It also correctly recognizes cases like reproduction were one bacteria split in 

two. 

The integration is done with the the lsoda algorithm from the 

FORTRAN library odepack. This allow us to interrogate the system at the selected 

point in time, making it really easy to use this simulation in the process of data 

modeling. 

It is important to note that in general ODEs can have a behavior different from the 

expected values of the master equation, as all the nonlinearities in the model equation 

will alter the value of the expected values in respect to the deterministic value. This is 

due to the variance of the model, which the nonlinearities include in the evaluation of 

the expectation. A simple example of this phenomenon can be seen in the Chi squared 

distribution, that is the distribution of the square of a normally distributed variables. 

This distribution has an expectation equal to the variance of the original distribution, 

that is very different from the square of the expectation of the normal distribution, which 

is 0. 

These equations also do not consider the possibility of extinction in the evolution of the 

system. 
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6.3 Stochastic version 

The simulations has been performed using a Stochastic Simulation Algorithm to assure 

a correct evaluation of the model even for low number of bacteria. 

During following phases of the project the model will be implemented as a hybrid 

algorithm using SSA, tau leaping and Chemical Langevin algorithms to balance 

precision and time of evaluation. Where the number of molecules is small, the SSA will 

be used, moving to tau leaping and Chemical Langevin as the numbers grow bigger. 

Being a stochastic simulation, what we can obtain is a distribution, ether stationary or 

evolving in time, to describe our system. 

For stationary distribution we can use the ergodic theorem for Markov chain and use a 

long running simulation to infere the stationary properties. 

For the time dependent one the only solution is a massively parallel simulation of 

several versions of the system to evaluate not only the expected value but also the 

variance with a sufficient confidence margin 

In this phase the model is a single compartment one, but this will be changed in the 

next phases as we will try to model the internal movements of the gut microbiota. 

This is important because each population can suffer from temporary extinction in the 

stochastic models, whereas this phenomenon cannot happen in the deterministic 

version. This is always a possibility, but the effect is removed if one consider an 

immigration, both from the external and other region of the colon. 

6.4 Model Testing 

Generalized Lotka-Volterra models can exhibits a non-trivial dynamics, as they can in 

principle describe multistable states. This multistability can emerge when the 

competition terms are sufficiently strong. As far as we know there is no evidence of this 

kind of really strong competition between different strand of species, so we worked 

under the hypothesis that a single stable state exist. 

We tested different starting condition for each parameter combinations and observed 

that the behavior is compatible with a single stable state. This behaviour is clear both 

on the deterministic ODEs, that are strongly sensible to the initial condition, and the 

stochastic version, that are robust to differences in the starting position of the 

distribution. 

Given the novelty of the model we started the simulation with a SSA repeated several 
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times on a short timescale, expanding it progressively over a couple of order of 

magnitude to confirm that what we found was a stable stationary states and not a 

metastable one. 

In general more species were added to the model and faster the convergence to the 

stationary state, as the increasing number of interaction determined a stronger 

pressure to reach the equilibrium state. 

 

7 Deliverable Conclusions 

We created an ecological model for the GM temporal evolution. The  model is based on 

a adaptation of the classical n- species Volterra equation. We provided both a 

stochastic and  a deterministic version. The deterministic version is very fast, a system 

of 1000 equation is integrated in few hours, even if the code is not optimized for 

velocity. An optimized version of code will be developed in the next future. The 

stochastic version is more slow and its velocity is strongly dependent from the number 

of bacteria. The behaviour of the system is stable, and each solution reaches a stable 

state as shown in the results. We surmise that this model will be capable to provide a 

mechanistic explanation of the species abundance observed in Gut Microbiota data. 

The model we created is rooted in the conceptualization of Metagenomic ( the set of 

omics measurements aimed to quantify the composition and the interactions dynamics  

between the host and the microbiome). We collected many metagenomic data, both on 

GM composition and on host characterization. It will be of great interest to fit this data 

with our model, both deterministic and stochastic. Starting from some preliminary 

observation on data fitting we can anticipate that the OTU distribution is a Gamma type 

in some cases, as predicted by the neutral theory of evolution, but we can observe also 

variation from this behaviour even if the distributions are with lon tails. This is a very 

interesting phenomena and will be very important to see how much is conserved 

across our data. 

 
 

8 Annex: Simulation Code 

 
# -*- coding: utf-8 -*- 
# <nbformat>3.0</nbformat> 
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# <codecell> 
 
from __future__ import division 
#from sympy import * 
import sympy 
from sympy import Symbol 
from scipy.integrate import odeint 
 
 
# <codecell> 
 
from collections import defaultdict 
#from IPython.core.display import display 
 
# <codecell> 
 
import numpy as np 
from numpy.random import exponential as rand_exp 
#import pylab 
 
from sympy.utilities.lambdify import implemented_function, lambdify 
 
# <codecell> 
 
class myCounter(defaultdict): 
    def __init__(self, other={}): 
        defaultdict.__init__(self, int) 
        for k, v in other.items(): 
            self[k]+=v 
    def __add__(self, other): 
        new_counter = myCounter(self) 
        for k, v in other.items(): 
            new_counter[k]+=v 
        return new_counter 
     
    __radd__ = __add__ 
     
    def __sub__(self, other): 
        new_counter = myCounter(self) 
        for k, v in other.items(): 
            new_counter[k]-=v 
        return new_counter 
     
    def __rsub__(self, other): 
        new_counter = myCounter(other) 
        for k, v in self.items(): 
            new_counter[k]-=v 
        return new_counter 
     
    def __mul__(self, other): 
        new_counter = myCounter() 
        for k, v in self.items(): 
            new_counter[k]+= other * v 
        return new_counter 
     
    __rmul__ = __mul__ 
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    def positive(self): 
        return all(v>=0 for v in self.values()) 
     
    def __str__(self): 
        return "{"+ ", ".join("{}={}".format(k,v) for k, v in self.items()) +"}" 
     
    __repr__ = __str__ 
 
# <codecell> 
 
def variazione(expr): 
    """given an expression returns the corresponding variation of the state 
    A   --->  {A:1} 
    A+B --->  {A:1, B:1} 
    2*A --->  {A:2} 
    """ 
    res = myCounter() 
    if expr is None: 
        return res 
    for s in expr.free_symbols: 
        res[s] = sympy.diff(expr, s) 
    return res 
 
# <codecell> 
 
def shift(state, substrate, products, kinetic): 
    """given a starting state and a variation on the state,  
    it returns the destination state and the transition constant or None 
    """ 
    first_passage = state - substrate 
    if first_passage.positive(): 
        return first_passage + products, kinetic.subs(state) 
    else: 
        return None, None   
 
# <codecell> 
 
class CME(object): 
    def __init__(self): 
        self.reactions = [] 
         
    def add_reaction(self, substrate, products, kinetic): 
        """add a reaction to the CME, given the consumed substrate, the created product and the 
reaction kinetic""" 
        self.reactions.append( (variazione(sympy.sympify(substrate)),  
                                variazione(sympy.sympify(products)),  
                                sympy.sympify(kinetic)) ) 
         
    def escapes(self, start): 
        """given a starting state it evaluate which states are reachable and the corresponding 
transition rate""" 
        start = myCounter(start) 
        end_states = [] 
        kinetics = [] 
        for substrate, products, kinetic in self.reactions: 
            end_state, kinetic = shift(start, substrate, products, kinetic) 
            if kinetic and end_state is not None: 



   
           
 
 
 

FP7- 600803    [D2.2 - v1.3]    Page 26 of 32 

 
 

                end_states.append(end_state) 
                kinetics.append(float(kinetic)) 
        kinetics = np.array(kinetics) 
        return end_states, kinetics 
 
    def gillespie(self, start, t_end=10.0): 
        """make n step of gillespie simulation given the starting state""" 
        start = myCounter(start) 
        steps = t_end 
        time = 0.0 
        while time<steps: 
            end_states, kinetics = self.escapes(start) 
            cumulative = np.cumsum(kinetics) 
            if not len(end_states) or not len(cumulative): 
                # ho raggiunto uno stato stazionario 
                yield start, np.inf 
                break 
            lambda_tot = cumulative[-1] 
            dt = rand_exp(1./lambda_tot) 
            selected = np.searchsorted(cumulative/lambda_tot, np.random.rand()) 
            new_state = end_states[selected] 
            yield start, dt 
            time +=dt 
            start = new_state 
             
    def evaluate(self, start, t_end, *functions): 
        """evaluate the value of several function in time given a starting state and the number of 
step to be done""" 
        time = 0.0 
        states, dts = zip(*self.gillespie(start, t_end)) 
        time = np.cumsum([0] + list(dts)) 
        states = [start] + list(states) 
        func_values = { function:[ float(function.subs(state)) for state in states ] for function in 
functions} 
        return time, func_values 
     
    def distribution(self, start, steps=10, burnout=-1, *functions): 
        """return the stationary distribution from a gillespie simulation""" 
        distrib = defaultdict(float) 
        time = 0.0 
        for idx, (state, dt) in enumerate(self.gillespie(start, steps)): 
            time+=dt 
            if time>burnout: 
                state = tuple(sorted(state.items(), key=str)) 
                distrib[state]+=dt 
        if not distrib: 
            return {tuple(sorted(state.items(), key=str)):1.0} 
        result = {} 
        for function in functions: 
            if isinstance(function, (tuple,list)): 
                pass 
            else: 
                A_distrib = { int(function.subs(dict(k))):v for k, v in distrib.items()} 
                min_a, max_a = min(A_distrib), max(A_distrib) 
                A_distrib = [A_distrib.get(idx, 0.0) for idx in xrange(min_a, max_a+1)] 
                result[function] = A_distrib 
        return result 
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    def writeCME(self): 
        """write the complete CME of the given process""" 
        p = Symbol('p') 
        pxy = p(*sorted(k for k in set.union(*[set(substrate-products) for substrate, products, kinetic 
in self.reactions]))) 
        base = 0 
        for substrate, products, kinetic in self.reactions: 
            transition = substrate-products 
            temp = (pxy*kinetic).subs( {k: k+transition.get(k, 0) for k in transition}) - pxy * kinetic 
            base += temp 
        return base 
     
    def transition_matrix(self, start): 
        """create the transition matrix and the state vector  
        from a starting point 
 
        Will stuck in an infinite loop if the CME is not limited 
        """ 
        start = myCounter(start) 
        states = [start] 
        transitions = dict() 
        for state in states: 
            for destination, kinetic in zip(*self.escapes(state)): 
                if destination not in states: 
                    states.append(destination) 
                transitions[tuple(state.items()),  
                            tuple(destination.items())] = kinetic 
        return transitions, states 
 
    def MCMCstep(self, start): 
        for result, time in self.gillespie(start, steps=1.0): 
            pass 
        return result 
     
    def symbol_set(self): 
        symbol_set = set() 
        for reaction in self.reactions: 
            prod, reag, kine = reaction 
            for k in prod.keys(): 
                symbol_set.add(k) 
            for k in reag.keys(): 
                symbol_set.add(k) 
            for k in [s for s in kine.atoms() if s.is_Symbol]: 
                symbol_set.add(k) 
        return sorted(symbol_set) 
     
    def odeint(self, start, time=(0.0, 1.0)): 
        symbols = self.symbol_set() 
        x0 = [start[s] for s in symbols] 
        modifiche = { s:0.0 for s in symbols } 
        for reaction in self.reactions: 
            prod, reag, kine = reaction 
            for k, v in prod.items(): 
                modifiche[k] -= v*kine 
            for k, v in reag.items(): 
                modifiche[k] += v*kine 
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        funzioni = {k:lambdify(symbols, f) for k, f in modifiche.items()} 
        funzioni = [funzioni[s] for s in symbols] 
        def derivata(values, t): 
            return [f(*values) for f in funzioni] 
        res = odeint(derivata, x0, time).T 
        return {s:res[i] for i,s in enumerate(symbols)} 
 
 
if __name__ == '__main__': 
    import pylab 
    from itertools import combinations_with_replacement as cwr     
    from sympy import Rational as R     
     
    species = sympy.symarray('S', 9) 
    nutrients = sympy.symarray('N', 2)     
     
    symbols =    list(species)+list(nutrients)  
     
    print "inizio a creare la cme"     
     
    cme = CME() 
    print "\tinserisco termini singoli"   
    for specie in species: 
        # decadimento del batterio 
        k = R(10+pylab.randint(20), 200)  
        cme.add_reaction(specie,  
                         None,  
                         k*specie) 
                          
    print "\tinserisco termini di competizione" 
    for specie_1, specie_2 in cwr(species, 2): 
        k = R(10+pylab.randint(20), 200)  
        cme.add_reaction(specie_1,  
                         None,  
                         k*specie_1*specie_2) 
        k = R(10+pylab.randint(20), 200)  
        cme.add_reaction(specie_2,  
                         None,  
                         k*specie_1*specie_2) 
     
    print "\tinserisco termini dei nutrienti" 
    for specie in species: 
        for nutrient in nutrients: 
            k = R(20+pylab.randint(20), 10)  
            # immigrazione del batterio 1 per via del cibo 
            cme.add_reaction(None,  
                             specie,  
                             k*nutrient) 
            # riproduzione del batterio 1 per via del cibo 
            k = R(30+pylab.randint(20), 10)  
            cme.add_reaction(None,  
                             specie,  
                             k*nutrient*specie) 
            # morte del batterio 1 per via del cibo 
            #cme.add_reaction(specie,  
            #                 None,  
            #                 (0.1+pylab.rand())*nutrient*specie) 
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    start_state = {} 
    for specie in species: 
        start_state[specie] = 20 
    for nutrient in nutrients: 
        start_state[nutrient] = 10 
 
    L = len(species) 
    r, c = 3, 3 
    fig, ax = pylab.subplots(r, r,  
                             figsize=(5*r, 4*c), 
                             sharex=True, 
                             sharey=True) 
    assi = {s:axi for s, axi in zip(species, ax.ravel())} 
     
    colors = {} 
    color_cycle = assi.values()[0]._get_lines.color_cycle 
    for s, c in zip(symbols, color_cycle): 
       colors[s]=c  
     
    print "inizio i gillespie" 
    times = [] 
    time_end = 0.1 
    simulazioni = 3 
    for i in xrange(simulazioni): 
        print "\tinizio simulazione numero {} di {}".format(i+1, simulazioni) 
        time, functions_dict = cme.evaluate(start_state, time_end, *symbols) 
        last_time = time[-1] if not isinf(time[-1]) else time[-2]*1.1 
        times.append(last_time) 
        for symbol in species: 
            assi[symbol].plot(time,  
                    functions_dict[symbol],  
                    linestyle='steps-mid',  
                    alpha=0.5,  
                    color=colors[symbol]) 
 
    #ax.set_xlim(0.0, 1.0) 
     
    tempo = pylab.r_[0.0: max(times): 100j] 
     
    print "inizio la deterministica"     
     
    res = cme.odeint(start_state, tempo) 
    for specie in species: 
        k = specie 
        v = res[k] 
        assi[k].plot(tempo, v,  
                label=str(k),  
                color=colors[k], 
                linewidth=3) 
     
    print "terminato"     
     
    for asse in ax.ravel(): 
        asse.legend() 
    fig.tight_layout() 
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